

Want to Be A Maestro? A Simulation System

Implemented on FPGA
Zong-Min Lin

*
, Chun-Hao Hsieh

#
, Dong-Yu Gao

*
, and Yin Chang

*

#Department of Dentistry, National Yang-Ming University

* Department of Biomedical Engineering, National Yang-Ming University

zongminlin@livemail.tw, z2567989@hotmail.com

tonygaogao@hotmail.com, yichang@ym.edu.tw

Abstract— With a change of gesture, a conductor can control

every division of the concert band in our system. By wearing a

glove with infrared emitters in one hand, and holding the baton

equipped with the ultrasonic transmitter in the other hand, the

system is made to detect the changes of the gestures and the

movement of the baton. Our two simple notions: an infrared

emitting and receiving mechanism, and the Doppler effect.

After sensing these stimuli, the system transmits these data to

FPGA for analysis. The Musical Instrument Digital Interface

(MIDI) processor then reads these analysed data, and modifies

the speed and loudness of the music synchronously. Eventually,

the music is played by the electric piano. By means of changed

gestures, the conductor can alter the characteristics of music at

his/her will, and hears the sound of modified music

synchronously.

Keyword— Doppler effect; Infrared; MIDI; Conductor;

Ultrasound

I. INTRODUCTION

It’s such a wonderful and elegant experience for us to

listen to incredible and stunning music performances in our

daily lives. Slowly immersed in the beautiful, and

intermittent musical sound, we can see a great conductor

dressed in a black tuxedo, standing on stage, and making

diverse gestures, which shows the speed, and intensity of the

music, in order to enable the concert band to perform

melodious music. This terrific scene inspires us to simulate

conducting a concert band where various gestures can be

used to control the division of the concert band.

Generally, a good conductor has several works to do

during the musical concert:

A. Performance Instruction

The duration of a musical concert is often so long that it is

difficult for performers to remember all the music details.

Therefore, performers in different divisions of the concert

band require the instruction from the conductor.

B. The Determination of the Characteristics of Music

A wonderful musical performance filled with the mixture

of different musical characteristics – the musical speed and

volume – is indispensable to a conductor.

C. Improvisation

Sometimes a subtle improvisation added into the music

performance is necessary for a conductor.

By using infrared technique and the Doppler effect, we

can simply sense the changes of the gestures and the

movement of the baton respectively. Then, after receiving

these data from sensors, they are transferred to FPGA for

further analysis. Besides, music file stored in the SD card are

also read to the FPGA. Once the analysis of sensed signals in

FPGA is completed, the result will reflect the music. And

eventually, the combination of analysed data and music data

is transferred to the electric piano to play the modified music.

With this simple notion, we can create a simulated symphony,

in which by changing gestures, the conductor, the user, can

alter the characteristics of music at his/her wills, and hears

the sound of modified music synchronously.

Musical Instrument Digital Interface (MIDI), is a technical

standard depicting the way in which digital interfaces and

connectors allow a wide variety of electronic musical

instruments, computers and other related devices to connect

to and communicate with one another. MIDI has the

capability to carry event messages that specify notation, pitch

and velocity, control signals for parameters such as volume,

vibrato, audio panning, cues, and clock signals that set and

synchronize tempo between multiple devices.

II. SYSTEM FRAMEWORK

In our system, we act as a conductor to operate the

simulative symphony. A conductor masters the tempo and

volume of the different divisions of the concert band through

changes of gestures and the baton. The signal processor and

command generator block in the system receives and

processes the stimuli, or namely orders from changes of the

gesture, and adjusts the musical speed and sequences of the

music played by the MIDI synthesizer, and also creates the

simulative musical performance.

The system design diagram is shown in Figure 1. The

conductor stands at the center of the system, and is

surrounded by boxes, which are represented as different

divisions of the concert band. Every box is embedded with

two infrared receivers, and oriented to the conductor. The

arrangement of the musical division is in a semicircle shape

2

for even effect of the system. There are also two

microphones in the left and right-hand side of the conductor

for receiving the baton’s movements.

When acting as a conductor in our system, a conductor is

required to wear a pair of gloves, and then holds a baton with

the ultrasonic transmitter in the right hand. Infrared emitters

are installed in both the center of the palm and the top of the

left index finger. The former is for controlling the playing of

any division of the concert band, but, on the contrary, the

latter is to stop it.

The operation in our system can also be divided into two

systems: the symphonic division control system and the

speed control system. In the former system, we need two

infrared receiver and emitter pairs to operate the start and

stop of the performance in every symphonic division; the

latter one is based on the Doppler effect to control the speed

of the music through microphones and a baton with

ultrasonic transmitters.

A. Symphonic Division Control System

The concert band always needs instruction in a perfect

musical performance, for instance, the proper time to play

music, the musical volume, the mood of the performers, and

so on. By means of the infrared technique, we can control the

performance at our will.

When wearing the left-handed glove with an infrared

emitter installed at the tip of the index finger, we can easily

point to any division of the concert band. Such will make

that division start to play music as shown in Figure 2 (A) to

(B). However, if we move our left palm towards any division

of the concert band and then fist, it will result in stopping

playing of this division shown in Figure 2 (C) to (D).

There are two infrared emitters in our left-handed glove,

but their emitting frequencies are significantly different. The

infrared emitter at the tip of the index finger stands for the

start of the performance, while the one in the left palm stands

for the stop of the performance. When a conductor wants any

of the divisions to perform music, he/she needs to point at

the division with his left index finger, and holds on for a few

seconds. Such can make the infrared receiver sense the

lasting signal, and the control system will order the division

to start playing music. On the contrary, if a conductor wants

to stop the playing of one of the symphony divisions, he

needs to move his left palm, orient it to the division and halt

in order to let the infrared receiver sense the lasting signal.

Once the conductor clasps his left palm, the infrared receiver

cannot sense any further signal, making the control system

mute the music of the division.

Figure 1. System Design Diagram

B. Speed Control System

Controlling the performance speed in conducting plays a

crucial role in the symphony. For this reason, we installed an

ultrasonic transmitter sounding a sinusoidal wave with the

specific and high frequency in the top of the baton. Once the

user waves the baton, both sides of microphones will receive

the signal from the ultrasonic transmitter when the music still

continues playing, causing a relative motion between these

two units, and eventually, generating the Doppler effect

shown in Figure 2 (E) to (F).

Figure 2. The gesture diagram. (A) to (B) illustrates the start of the
performance to the division of the concert band by the infrared emitter at

the tip of the left index finger; (C) to (D), the stop of the performance to

the division of the concert band by the infrared emitter on the palm of the
left hand; (E) to (F), the behavior between the microphone and the baton

held by the right hand.

3

III. SYSTEM DESIGN

As shown in Figure 3, the whole system, implemented on

FPGA, EP4CE115F29C7N, is divided into three main

blocks:

 Flow Controller Block

 Signal Processor and Command Generator Block

 MIDI Processor Block

The Flow Controller Block has a finite state machine

(FSM) architecture. Based on user input and some other

information, it controls the process of the system by

changing state registers. The Signal Processor and Command

Generator block (SPCG) receives IR signals from peripheral

general purpose IO pins (GPIOs) and ultrasound signals from

a sound card. Then, SPCG analyses signals and generates

commands to control the MIDI Processor. The MIDI

Processor block is in charge of playing all of the MIDI

messages, including decoding MIDI files, loading MIDI

messages, retrieving MIDI messages and sending MIDI

messages. More details are as follows.

Figure 4. State flow of system

A. Flow Control – FSM

The system flow shown in Figure 4 includes six states, i.e.

idle state, load-data state, calibration state, ready state, run

state, end state. After reset, the system will be in idle state,

waiting for the user to input a ‘load-data’ command and then

it progresses to load-data state. When all data has been

loaded and saved into memory, the system gets into ready

state. In this state, the system is idle and waits for a ‘start’

command to progress to run state, in which the system starts

playing music. In the end of the playing, the system turns

into end state, then back to ready state, completing one

playing process. In addition, the user can input a ‘calibration’

command to make the system turn into calibration state for

alignment and calibration when it is in idle state or in ready

state.

1) idle state: The state of initialization.

Figure 3. Block diagram of the system architecture

4

2) load-data state: In this state, the SMF data will be

loaded from SD card and be decoded. All essential channel

messages will be saved into SRAM in order, while tempo

information will be saved in specific registers.

3) ready state: It’s the idle state after data being saved in

SRAM, waiting for user input to turn into next state.

4) run state: The system is playing. MIDI processor

retrieves and transmits channel messages at specific speed,

while SPCG is enable to receive IR signals and ultrasound

signals and analyse those to generate commands.

5) end state: The state indicates the end of playing.

Lasting a short moment, then it turns into ready state.

6) calibration state: The state undertaking calibration of

some parameters in SPCG block for better analysis.

Figure 5. Block diagrams. Signal Processor and Command Generator (left)

and MIDI Processor (right)

B. Signal Processor and Command Generator

Shown in Figure 5, there is an IR-command analyser, a

Doppler-effect analyser, an ADC receiver and a calibration

sub-block in this block. To expand, the Doppler-effect

analyser is in charge of analysing ultrasound signals and

detecting the period, while the ADC receiver block is

responsible for connecting WM8731 audio codec as well as

receiving audio data.

C. MIDI Processor Block

Including SMF-file loading and decoding,

channel-message processing and transmitting, a core

processor architecture, shown in Figure 5, is implemented in

this block for all functions about MIDI data processing.

MIDI channel message is saved in SRAM because the size of

SRAM on DE2-115 is large enough to save a big amount of

channel messages.

IV. TECHNIQUES

A. Playing and Muting the Instrument

The infrared modules are used to achieve these functions.

Two IR transmitters with different wavelengths are fixed

on the glove. One is for the function of playing an

instrument, and the other is for that of muting an instrument.

Each simulated instrument contains two IR receivers

corresponding to transmitters. For simplification, the circuit

of the transmitter on the gloves only contains two

individual resistors to limit the current of the circuit. The

most important issue of the receiver is ‘debounce’, so we

implement 1 counter for debounce of the function of

playing an instrument and 2 counters for debounce and

delay of the function of muting an instrument.

B. Period Detection

Doppler effect, otherwise known as Doppler shift were

first described by Christian Andreas Doppler in 1842. It

explains the phenomenon whereby the relative motion

between the observer and source of the wave results in a

change in frequency of the wave.

Based on the equipment of DE2-115, we chose 40 kHz

as the frequency of the ultrasound, which is still the

standard frequency of ultrasound for range detection. On

average, the range of BPM (beats per minute) of a song is

from 30 to 180. Supposing that the range of motion of the

conductor’s hand is 50 cm or so, the frequency will shift to

the range 40.030 kHz ~ 40.177 kHz.

Keniciro Aoki et al. described in an experiment that a

pendulum source is giving out a 3520 Hz sound, through

Discrete Fourier Transform (DFT) and plotting the peak

frequency at each moment, the periodic variation of the

peak frequency can be observed, shown in Figure 6.

Similarly, supposing that the conductor’s hand gesture

moves like a pendulum, we can get the variation of peak

frequency through DFT. Then using peak detection or

regression, we can evaluate the period of the curve and

further regulate the tempo of playing songs.

Figure 6. Simulation of peak frequencies measured from a sound source

swinging as a pendulum

5

C. MIDI Files Decoding

The standard file format in MIDI system is SMF

(Standard MIDI File, .mid files). MIDI files are organised

into data chunks with each prefixed by a 4 byte header, as

shown in Table 1. The header chunk prefixed as “MThd”

contains information on the whole song including MIDI

format type, number of tracks and timing division. 3 format

types having a value of 0, 1 or 2, describe how the following

track information is to be interpreted. A type 0 MIDI file

contains all the MIDI events for the song, including the song

title, time signature, tempo and music events.

Due to its simplicity, we chose the type 0 to simulate the

symphonic band which contains 1 track and 16 channels to

represent 16 divisions. There is only one “MTrk” truck or

called track chunk which stores all the MIDI events in the

file under type 0. Track chunks contain all of the information

for an individual track including, track name and music

events.

MIDI events are divided into three groups: channel

messages, system messages and meta events. Most of the

system messages and meta events are not used in the musical

content so it will be ignored after decoding. In our system,

SMF is first read sequentially from the SD card and the

header trunk is recorded to determine the tempo for songs.

Then, the channel messages and other messages regarding to

musical content are stored in the SRAM and will be read by

the processing unit while the music is playing.

TABLE 1

FORMAT OF CHUNKS IN SMF

SMF

Types (presented

in ASCII code)
Length Data Format in Chunks

0x4D546864

(MThd)
6 bytes <format>,<tracks>, <division>

0x4D54726B

(MTrk)
variable <delta_time>, <event>

There are two factors controlling the tempo in the MIDI

songs. It can be calculated in the formula below.

𝒕𝒊𝒄𝒌 𝒕𝒊𝒎𝒆(𝒖𝒔) =
𝑻𝒆𝒎𝒑𝒐 (𝒖𝒔/𝒃𝒆𝒂𝒕)

𝒅𝒊𝒗𝒊𝒔𝒊𝒐𝒏 (𝒕𝒊𝒄𝒌𝒔/𝒃𝒆𝒂𝒕)

The MIDI header chunk contains the time division used to

decode the track event delta times into “real” time. This

value represents either ticks per beat or frames per second. In

our system, only the ticks per beat will be presented. The top

bit of the word is 0 and the following 15 bits describe the

time division in ticks per beat. Ticks per beat translate to the

number of clock ticks or track delta positions in every

quarter note of music.

The meta event, 0xFF5103, also plays a role in tempo

control. It sets the sequence tempo in terms of microseconds

per quarter-note which is encoded in three bytes. It is usually

found in the first track chunk. If no set tempo event is present,

120 beats per minute is assumed.

D. MIDI Tracks and Volume Control

MIDI Channel Events are the most common type of

track event and usually make up the bulk of a MIDI file.

The Table 2 gives an overview of the five MIDI Channel

Events, listing their numeric value and parameters.

TABLE 2

 FORMAT OF MIDI CHANNEL EVENT

Event

Type

Value

(4 bits)

Channel

(4 bits)

Parameter 1

(1 byte)

Parameter 2

(1 byte)

Note Off 1000 0000-111

1

note number Velocity

Note On 1001 0000-111

1

note number Velocity

Aftertouch 1010 0000-111

1

note number Aftertouch value

Controller 1011 0000-111

1

controller

number

controller value

Program

Change

1100 0000-111

1

program number not used

MIDI Channel Events usually composes of 3 bytes. The

first byte describes the commands and corresponding

channels. The following bytes are parameter 1 and parameter

2. Both formats depend on the event types. For example,

Note Off Event is used to signal when a MIDI key is released.

Note number specifies which of the 128 MIDI keys is being

played and the velocity determines how fast/hard the key was

released. In our design, when the volume off gesture is

detected by the IR, the MIDI processor will generate a “Note

Off” signal to mute the channel. The Note On event is

similar to the Note Off event. The volume on gesture is also

detected and will be responded by a Note On signal.

E. MIDI Command Transfer

Hardware interface of MIDI dataflow is an asynchronous

serial interface with a Baud rate of 31.25kbps. Data contains

0 as start bit, 1 as end bit and 8 data bits, transferring in LSB

first mode. Our system reads the data in the queue of

message out under 1 MHz clock and sends out the data under

31.25 kHz after frequency dividing.

MIDI hardware implementation is as recommended as

Figure 7. DIN 5-pin connector is used to connect the MIDI

IN port of the synthesizer.

6

Figure 7. MIDI hardware design

ACKNOWLEDGEMENT

We acknowledge support of Altera corp. and Terasic

Technologies corp. and thank prof. Chang Yin for

encouragement as well as financial support. Also, we are

indebted to prof. Tsao Jen Ho for helpful suggestions on

ultrasonic techniques. Last but not least, Thank Stephanie

Wen for proofreading.

REFERENCE

[1] Aoki, K., T. Mitsui, and Y. Yamamoto, Direct quantitative
measurements of Doppler effects for sound sources with

gravitational acceleration. arXiv preprint arXiv:0911.3819, 2009.

[2] Braem, P. and T. Bräm, A pilot study of the expressive gestures
used by classical orchestra conductors. Journal of the

Conductor’s Guild, 2001. 22(1-2): p. 14-29.

[3] Chen, J.-m., Implementation of MIDI Synthesizer on SoC

platforms. 2006.

[4] Roland Dictionary for Terminology. Available from:

http://www.rolandtaiwan.com.tw/glossary/glossary.htm.
[5] MIDI Manufacturers Association. Available from:

http://www.midi.org/.

[6] MIDI Messages Table. Available from:
http://www.midi.org/techspecs/midimessages.php#3.

[7] Standard MIDI File. Available from:

http://home.roadrunner.com/~jgglatt/tech/midifile.htm.
[8] General MIDI guide. Available from:

http://www.midi.org/techspecs/gmguide2.pdf.

[9] Wikipedia - MIDI. Available from:
http://zh.wikipedia.org/zh-tw/MIDI.

[10] MIDI 1.0 Detailed Specification, Revised September 1995.

Available from:
http://madamebutterface.com/assets/documents/MIDI%201.0%2

0Detailed%20Specification.pdf.

[11] WIKI Conductor. Available from:
http://wikipps.hk/%E6%8C%87%E6%8F%AE/.

[12] The Platform of High-Scope Program - Doppler Effect. Available

from: http://case.ntu.edu.tw/hs/wordpress/?p=2841.

[13] MIDI File Format. Available from:

http://www.sonicspot.com/guide/midifiles.html.

[14] Wikipedia – Doppler Effect. Available from:
http://zh.wikipedia.org/wiki/%E5%A4%9A%E6%99%AE%E5%

8B%92%E6%95%88%E5%BA%94.

