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Abstract— This study proposes an efficient system architecture 

for camera distortion correction, in which a neuron-based 

camera distortion corrector (NCDC) is applied to rapidly correct 

various camera and lens distortions and manufacturing flaws in 

economical cameras. Compared to traditional camera models for 

correcting camera and lens distortions, for which more than two 

types of models are used, the NCDC uses one neural model to 

correct geometric distortions and asymmetric manufacturing 

defects.  

The NCDC consists of a front-end that calculates back-map 

coordinates in distortion image space and a back-end that reads 

camera distortion image pixels from memory to interpolate a 24-

bit color pixel corrected image. In a complex camera system with 

field-programmable gate array (FPGA), the back-end uses a 

burst mode and multi-port access architecture to fetch the image 

pixel from a high-latency memory, which increases the number 

of correction frames per second (CFPS) of the camera corrector. 

Moreover, a development board using high-speed memory was 

designed to increase the camera correction efficiency. The results 

show that the CFPS of an NCDC back-end with the proposed 

architecture is over 19.39x higher than professional solutions. 

 

Keywords— back propagation; camera distortion; distortion 

correction; FPGA; geometric distortion; neural network 

I. INTRODUCTION 

Cameras are indispensable in most computer, 

communication, and consumer electronics products, especially 

photographic, vehicle electronics, surveillance, and numerous 

human interaction applications. Precision and the visible range 

are crucial for measurements in the medical field [1]. 

To capture an image with a greater visible range, the 

convex or concave lens of a wide-angle camera collects more 

light from captured objects. The collected light projects onto 

the fixed-size image-sensor array of the camera. However, the 

refracted angle of the light within the convex lens increases 

from the center to the edges, distorting the captured image at 

the rear of the convex lens. This barrel-type spatial distortion 

by the convex lens is traditionally corrected by a multi-piece 

lens group within a specific distortion range. This type of 

optical structure is large and costly to manufacture. 

However, low-cost cameras have several types of 

manufacturing flaws in their lenses, holders, and sensor 

boards. These cameras consist of various convex and concave 

lenses and an image sensor. The center of all lenses and the 

image sensor must lie along the same optical axis. As shown 

in the structural diagram in  

Fig. 1, two types of manufacturing defects can be observed 

between the lens holder and the sensor chip die in the camera 

module, in addition to the geometric and wide-angle 

distortions of the camera. 

 

 
 
Fig. 1. Manufacturing flaws in camera sensor and lenses. 

 

To correct for the low quality of cameras, Brown [2] 

presented a lens distortion model that includes the concept of 

decentering lens distortion. Weng [3] addressed the 

decentering and thin prism distortions in cameras, 

mathematically modeled these errors, and used a calibration 

board to obtain the distortion pattern used to calculate the 

parameters of the lens distortion model. These researchers 

used various software-implemented mathematical models to 

correct camera distortions. 

For correcting wide-angle lens distortions in real time, 

Asari [4] presented a similar distortion polynomial model 

based on a nonlinear least squares curve fitting (NLSCF) 

scheme to obtain the coefficients of the distortion polynomial. 

In contrast to the wide-angle lens distortion model by Weng 

[3], the Asari polynomial model is easier to implement with 

very-large-scale integration (VLSI) architecture. Studies [5-9] 

recently proposed hardware accelerator designs based on the 

Asari method. However, low-cost cameras have additional 

distortions that are not corrected by the VLSI architecture; 

therefore, high-resolution videos captured with wide-angle 
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cameras cannot be corrected in real time when used for 

medical imaging [1] or other measuring purposes. Therefore, 

Chen [10] proposed an efficient method for correcting camera 

distortion based on the VLSI architecture, in which a neural 

camera distortion model is applied to correct various lens and 

manufacturing flaws of low-cost cameras rapidly. The neural 

corrector in [10] can produce over 30010
6
 back-map 

coordinates per second, which can process videos with 

resolutions of over 40962048 pixels. 

The back-map coordinates in the distortion image space 

(DIS) are float coordinates that require four pixels on adjacent 

coordinates to interpolate a new pixel in the correction image 

space (CIS). In [4, 6-10], the researchers assumed that the 

interpolator can immediately fetch four pixels from memory 

to calculate the new pixel in CIS. However, if the correction 

system uses fast static random-access memory (SRAM) to 

store a camera-captured distortion image, the memory reader 

requires a clock cycle to fetch a pixel. The size of the captured 

image is over 2MB because the resolution of the camera is 

over 19201080 pixels. An SRAM chip is a costly device 

with small memory size. Therefore, the general system uses 

synchronous dynamic random-access memory (SDRAM) to 

store the distortion image. Because the back-map coordinates 

are not continuous between the previous and subsequent 

coordinates, the memory reader requires more clock cycles to 

fetch a pixel from SDRAM without a burst mode.  

Chen [5] addressed the memory access problem in the 

VLSI architecture with SRAM, and proposed a time 

multiplexed method that shares part of the hardware circuit to 

reduce costs and throughput. The back-map generator in [5] 

produces a back-map coordinate for each of the four clock 

cycles. In the intermission time of the back-map generator, the 

interpolator can fetch four pixels from SRAM. However, the 

memory access action in an integrated system is more 

complex. As the interpolator fetches the pixels from memory, 

the camera control writes the next captured image to memory 

and the interpolated pixels are simultaneously written to 

memory.  

This study proposes back-end architecture of an NCDC in 

an integrated system that consists of a camera subsystem, 

universal serial bus (USB) 2.0 subsystem, microprocessor unit 

(MPU) subsystem, and NCDC subsystem to efficiently use 

bandwidth and the space of the DDR SDRAM, which can use 

the generated back-map coordinates of the front-end NCDC to 

interpolate the pixels of the corrected image. Finally, the 

proposed system can rapidly correct camera geometric 

distortions and asymmetric manufacturing defects. 

 

II. CAMERA DISTORTION CORRECTION 

A. Traditional Camera Distortion Models 

With the real camera and lens distortions, the general 

perspective projection does not make the transition from 

world space to image space perfectly. To model the projection 

of the camera, Tsai [11] proposed several linear relationships 

between points in a 3D space. The projections in an image 

plane are established based on the pinhole camera model 

(PCM). In the Tsai camera model, the ideal wide-angle lens 

distortion was established. 

Figure 2 shows a perspective projection model of a pinhole 

camera.    is the center of the image plane, and    is defined 

as the center of the world space.    is the center of the lens, 

which is also the center of the perspective projection model. 

 

 
Fig. 2. Perspective projection of pinhole camera model. 

 

   is an object point in the 3D world space, which is 

located at [        ] ,    is a projection point in 2D 

image-plane space, which is located at [     ] . The 

mapping relationship of the world-space point    to its image 

point    with the PCM is provided by 

 

      [   ]   (1) 

 

where   is the scaling factor of the projection size on the 

image-plane space.   is defined as an intrinsic parameter of 

the PCM presented in 
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] (2) 

 

where [     ]  are the coordinates of the camera lens center, 

  is defined as the focal distance,    and    are a fixed ratio 

between the width and the height of the pixel unit on the 

image sensor, respectively, and   is defined as the skew factor, 

which is zero for modern image sensors. 

The matrix [   ] is defined as an extrinsic parameter of the 

PCM, which is provided by 
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] (3) 

 

where   is a translation matrix, and   is a rotation matrix built 

on three Euler angles        , which is provided by 

 

                   (4) 
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The image plane rotates around the x-, y-, and z-axes with 

respective rotation angles  ,  , and  , which can be described 

by 
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In (3), the translation matrix   is inserted in the back of the 

matrix R because the relationship mapping of (1) uses 

homogeneous coordinates to express the coordinates between 

the world space and the image space, which can be written as 
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] (8) 

 

In the PCM, other than the geometry distortion from the 

perspective projection model, nonlinear distortion is the most 

important form of lens aberration. Because a real camera uses 

a convex or concave lens to refract light from the object, the 

accuracy of the lens affects the angle of the refracted light in 

the lens. The surface at the periphery of the convex or concave 

lens has more curvature, which disturbs the linear translation 

result of (8). 

To simplify the wide-angle lens correction method, Asari [4, 

8, 9, 12] used a curve polynomial to model the radial lens 

distortion, as follows: 
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 (9) 

 

where    √ ⃐ 
   ⃐ 

 ,  ⃐        and  ⃐       . 

[     ]  is a point in the DIS,    is the coefficient of the 

curve polynomial, and N is the order of the curve polynomial. 

The corresponding magnitude    is the distance from the lens 

center to a point in the DIS, and    is the distance from the 

lens center to a point in the CIS. 

The approach by Asari translates the lens distortion model 

from the Cartesian to the polar coordinates, and assumes that 

the lens distortion is a purely radial model, and that the point 

of the angle   in the corrected space and the point of the angle 

   in the distortion space is the same.   is given by 
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Fig. 3 shows the polynomial back-map (PBM) process by 

Asari. Before the PBM, the corrected image space       of 

the Cartesian coordinate system uses (10) to translate to the 

polar coordinate system      . The translation requires the 

distortion center to obtain the magnitude and the angle in the 

polar coordinate system. If the distortion center         is 

inaccurate, PBM correction generates substantial errors. 

Therefore, the distortion center of the PBM is generated from 

the average of the estimated centers by using the described 

method. 

 

 
 

Fig. 3. Asari process for wide-angle lens distortion correction. 

 

The point [     ]  in the CIS is obtained from the polar 

coordinates [     ]  in the CIS, which are provided by 
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Because the 2D coordinates translate to 1D coordinates in 

[4], the computation complexity is lower than in other 

research, which is useful for implementing the hardware 

accelerator for wide-angle correction [5, 6, 8, 9, 12]. 

However, the camera is not a perfectly manufactured 

product. In lower-quality cameras, Brown [2] proposed that 

the lens model is decomposed into two types of distortion: 

radial and tangential lens distortion. [     ]  are points in 

the DIS, which are provided by 
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where [   ]  is a point in the CIS,    and    are the radial 

distortion vectors, and    and    are the tangential distortion 

vectors. 

Radial lens distortion models more refraction angles from 

the lens center to the lens periphery for the convex or concave 

lens, which is described as 
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where  ⃐      ,  ⃐      , and    √ ⃐ 
   ⃐ 

 . 

  ,   … are the coefficients in the polynomial of the radial 

lens distortion model, which is used to change the curvature of 

the curve polynomial in the radial lens distortion model for 

various lenses. 

In low-cost cameras, the image sensor is not parallel to the 

wide-angle lens, which is a manufacturing flaw. This causes 

the radial lens distortion to simultaneously follow tangential 
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distortion. To correct this distortion, Brown [2] modeled the 

decentering distortion, as expressed by 
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] (14) 

 

where   ,   … are the coefficients in the polynomial of the 

tangential lens distortion model. For the wide-angle lens, (13) 

and (14) use higher-order terms to improve the correction 

accuracy. 

However, the real low-price camera still has many other 

manufacturing flaws that are not modeled. Besides geometric 

and wide-angle distortion of the camera,  

Fig. 1 shows the structure of a real camera module, 

indicating two types of manufacturing flaws between the lens 

holder and the chip die of the camera module.  

The optical mechanism of a low-cost camera also has 

several manufacturing flaws. The convex lens of the wide-

angle lens made by injection modeling is an asymmetrical 

convex lens, and a wide-angle lens, which has a more 

complex optical character, including a multi-piece lens group. 

Thus, a radial polynomial cannot model the complex optical 

character of asymmetrical barrel distortion. When the error 

from the manufacturing process accumulates, the optical 

center of the wide-angle lens diverges from the image sensor 

center. Correction of the error introduced by this 

manufacturing flaw requires more complex mathematical 

models to model the non-uniform distortion. A real distortion 

surface of a 120° low-price wide-angle lens in  

Fig. 5 shows complex and non-uniform characteristics. 

The images captured by a camera with a low-quality lens 

include horizontal, vertical, rotational, lens, and optical-

mechanism errors. Manufacturing flaws cannot be predicted, 

and not every camera has the same flaws. However, if the 

correction uses complex mathematical models to correct all of 

the distortion in the camera, the computational time becomes 

extremely large, and several precise calibrations are required. 

 

B. Neuron-Based Camera Distortion Corrector 

 

Fig. 6 shows the distortion-correction process proposed by 

Chen [10]. The NCDC consists of off-line calibration and 

forward correction processes. In the off-line calibration 

process, the calibration dots are detected from the calibration 

image captured using a wide-angle camera. The training stage 

uses the detected calibration dots to train the neural network 

with back propagation. After the off-line process, the NCDC 

can independently produce the back-map coordinates; that is, 

the pixel location of CIS in the DIS. The back-map 

coordinates in the DIS are float coordinates that require four 

pixels on adjacent coordinates to interpolate the pixels in CIS. 

 

 
 
Fig. 5. Calculated distortion depth of the 120° wide-angle lens. 

 

 
 

Fig. 6. NCDC process for wide-angle lens distortion correction. 

 
 
Fig. 4. Multi-layer feed-forward neural network. 
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The backpropagation neural network (BPNN) consists of 

the feed-forward stage, which is the MFFNN, and the error 

backpropagation stage. Because most problems in the real 

world are nonlinear, the MFFNN uses a multilayered structure 

to enhance the adjustability of nonlinear output results. The 

MFFNN learns from the supervised learning method, which is 

an error backpropagation (EBP) [13] method for error-

correction learning. The EBP method trains and modifies the 

weights and biases of the MFFNN. 

 

 
 
Fig. 7. A neuron of the BPNN. 

 

 

Fig. 4 shows a general MFFNN, where layers are numbered 

from 0 to M. The neurons of the hidden layer are numbered 

from 0 to HN. The network training of the backpropagation 

method includes the feed-forward stage and the EBP stage. 

In the feed-forward stage, the training patterns are 

sequentially inputted into the neurons from the input layer, 

and the input layer does not perform any operation. The 

calculated results propagate from the lower layer         to 

the upper layer     via the neuron connection.  

Fig. 7 shows a neuron, which consists of the multiply 

accumulator and the activation function. 

Equation (15) is the multiply accumulator operation, which 

sums the weight of the upper neurons and the bias. 

 

 

  
  ∑   

      
    

 

     

   

 (15) 

 

where    , and         ,    
  is defined as the weight 

that corresponds to the connection from neuron   in the 

        layer to   in the     layer, and   
  is defined as 

the bias of a neuron, which corresponds to neuron   in the 

    layer. Initialized values of the weights and the biases of 

the network are random numbers between 1 and -1. The 

neuron output   
  is activated from the weighted sum   

  in 

(16). 

 

   
      

   (16) 

 

where          . In  

Fig. 4, the neurons of the hidden layer use the tan-sigmoid 

function (17) to activate the weighted sum, and   is the scaling 

factor of the tan-sigmoid function that controls the curve rate. 

 

 
           

 

      
   (17) 

 

The neurons of the output layer use a linear function (18) to 

activate the weighted sum of the hidden neurons, and the 

activated results of the output neurons are the output of the 

MLP neural network. 

 

              (18) 

 

The EBP stage modifies the weights and biases of the 

neural network according to the error-correction rule. When   

is M in (19), the expected value    minus the neuron output of 

the output layer obtained is the output error of the neural 

network. The network error propagates back from the output 

layer to the hidden layer. 

 

  
  

{
 

 
     

     

∑    
     

   

     

   

          
 (19) 

 
Fig. 8. Neural processor arithmetic hardware. 
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The gradient   
  uses (20) to calculate the weighted neuron 

error of the hidden layer. 

 

   
    

      
   (20) 

 

The modification vector     
  is calculated using (21), and 

the correction rate   is defined as the learning rate, which is a 

scaling factor that limits the modification vector of the error 

correction in each iteration. 

 

     
     

   
  (21) 

 

After calculating all the modification vectors     
 , (22) 

updates the neuron weights of the neural network. 

 

    
      

     
  (22) 

 

The neuron bias modification method is similar to that of 

neuron weight modification. In the training period, all training 

patterns use the feed-forward operation to calculate the results, 

after which the backpropagation operation estimates the errors 

between the results and the target patterns. Based on these 

estimated errors, the weights and biases of the NN are 

modified by (22). The BPNN continues training with EBP 

until stopping conditions are met. After completing the EBP-

based training, the BPNN stops the backpropagation and uses 

only feed-forward to back-map the camera distortion surface. 

Fig. 8 shows the arithmetic hardware of a neural processor 

for the NCDC that consists of hidden neurons with two inputs 

and output neurons with four inputs. Because the input data of 

the correction NN are 2D coordinates      , the hidden layer 

in the MFFNN consists of four neurons with two inputs. To 

operate the two-input neurons at a high frequency, the hidden 

neuron is designed using pipeline architecture. After the input 

value is multiplied by the weight, the pipe registers store these 

results. Next, the multiplied results and the bias stored in the 

next-stage pipe register are summed to generate the net signal. 

The MFFNN in this study used the register to store the 

descriptor of the NN that controls the weights and biases of 

the hidden neurons in the NN. In the memory mapping of the 

bus system, the bus interface operates the descriptor register to 

write a value to register or read a value by the microprocessor. 

The arithmetic structure of the output neuron is similar to 

that of the two-input neuron. The pipe registers store the 

multiplied results of     
   and     

  . The two multiplied 

results in each pipe register are summed by an adder, and 

these summed results are stored in the second-stage pipe 

register. The third-stage pipe register then receives the sum of 

the added results of the second stage in addition to the bias. 

Because a neuron connected to the next stage is an easy and 

simple way, the input value of the neuron is limited to a range 

between 1 and -1. Thus, the neurons can comprise any 

structure in the NN for serving diverse purposes. 

When a wide-angle lens is switched to another camera, the 

NN can use the same neuron to correct the distortion. The 

input pixel coordinates of the new camera only require 

normalizing to a range between 1 and -1. The NN uses the 

new normalized data to train the weights and biases for the 

new camera. The normalized design of the neurons is a 

reusable structure, and for various applications the NN 

redesigns only the normalization arithmetic. 

The arithmetic operation in the neuron uses a fixed point 

for calculations. The input and output widths of neurons in the 

NN for camera correction are 24 bits. The normalized value 

can use the complete 24-bit width of the multiplier and the 

adder in the neuron, which can calculate the output most 

precisely. When the weights and biases are controlled at a 

fixed-point value within the 24-bit width, the limited range 

can ensure that the multiplication and summing operations in 

the neuron do not overflow. Thus, the output range of the 

neuron is limited to a fixed range, which simplifies the 

effective operating range of the tan-sigmoid arithmetic. 

 

C. Tan-Sigmoid Acceleration 

Tan-sigmoid, which is the most critical function in the NN 

of VLSI implementation, consists of an exponential and a 

divider shown in (17). The exponential function of the tan-

sigmoid is difficult to generate using the hardware arithmetic. 

In this study, the CORDIC was used to implement the 

hardware arithmetic of the exponential function. However, the 

CORDIC cannot directly generate the value of the exponential 

because it is operated in rotation mode to generate the results 

of         and        . In (23), the exponential value of   is 

the summed result of         and        . 
 

                    (23) 

 

Equation (24) is the iterative function of the CORDIC that 

is based on a pseudo-rotation method. To generate the values 

of         and        , the CORDIC is operated in rotation 

mode to calculate the following hyperbolic function: 

 

 

{

              
  

             
  

            

 (24) 

 

where      for the hyperbolic function. In rotation mode, 

   in (25) uses the sign of      to determine whether the next 

iteration is a positive or negative rotation. 

 

 
   {

          
            

 (25) 

 

where    . In (26),    is the rotating angle in the   stage. 

 

                (26) 

 

where    . After several iterative operations,      almost 

reaches 0.      and      converge on a hyperbolic term that 

can be written as 
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{
                             
                             

 (27) 

 

where    .   , which is produced from each pseudo-

rotation operation, is given by 

 

 

   ∏√      

 

   

 (28) 

 

where   is defined as the number of pseudo-rotation 

operations.    is a constant when   is greater than 25. 

To expand the operating range of the HBC, most studies 

based on the CORDIC [14, 15] divide the operating range of 

the EXP into several regions. Asari [15] divided    in (23) 

into integer and fraction regions, and preprocessed the integer 

results of the EXP stored in the LUT. The expanded 

          is calculated from 

 

             (         )     (          ) (29 ) 

 

where           is the negative integer part of    , and 

           is the fraction part of     that is              

  . The HBC in [15] is used to generate    (          ), 

and the preprocessing    (         ) multiplied by the result 

of the HBC is         , which effectively expanded by more 

than   . 

 

Fig. 10 presents the mean squared error (MSE) results of 

three fixed points, which shows that when the width of the 

fixed point is more than 20 bits, the increased ratio of the 

calculation precise is less than the increased ratio from the 18-

bit to 20-bit width. Based on this result, the    (          ) 

of the tan-sigmoid in this study involved using a 20-bit fixed 

point for implementation. 

In (17), after calculating the exponential, the result must be 

inversed. However, if a divider is used to inverse the 

exponential result, the hardware arithmetic comprises a large 

area to implement the divider. To use less area to implement 

the inverse arithmetic, in this study a linear CORDIC 

arithmetic was employed instead of the divider. 

Fig. 11 shows the results of the tan-sigmoid calculated 

using a linear vector CORDIC (LVC) and a general divider 

(DIV), with the operation of the two methods at a fixed point 

domain. 

Mix Modified HBC (MMHBC) [16] is used to generate 

more accurate and steady results than [15]. Fig. 13 presents 

the output characteristics of the tan-sigmoid obtained using 

the MMHBC and LVC from -15 to 15; these results are 

almost the same as the standard tan-sigmoid derived using a 

floating point. 

 

 
 

Fig. 10. MSE of the tan-sigmoid using three length fixed point. 

 

 
 

Fig. 9. The tan-sigmoid arithmetic structure for the MMBRC. 
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Fig. 11. Output error of the output error calculated using LVC and DIV. 

 

Fig. 14 shows the output error of the tan-sigmoid calculated 

using the MMHBC and LVC from -15 to 15. 

 

 

 
Fig. 13. Output characteristics of the tan-sigmoid obtained using the MMHBC 

and STD in full range. 

 

 
Fig. 14. Output error of the error across the entire range obtained using the 

MMHBC and LVC. 

 

shows the arithmetic structure of the tan-sigmoid function. 

A bit-sequence separator is used to separate the input value 

into sign bit, region bit, and least fraction bit from the net of 

the neuron. Because the output of the tan-sigmoid is 

symmetric with respect to the zero axis, the sign bit of the net 

is stored in a shift buffer, which is used to determine if the 

output of the tan-sigmoid is positive or negative in the final 

pipeline stage. Hence, the tan-sigmoid can be calculated from 

   and    . 

Because the arithmetic of the tan-sigmoid uses a divider to 

invert the term       in (17), the MHBC was used in this 

study only to calculate    . The result is 1 because   is 0. 

Then, as   increases in negative the direction, the result of the 

EXP approaches 0. 

Thus, the results of       range from 2 to 1. The 

complexity of the divider arithmetic in (17) can be controlled 

because the divisor and dividend range are fixed, and the 

dividend is less than or equal to twice the divisor; this is 

important for using the LVC to implement the divider 

arithmetic in (17). 

 

 
 
Fig. 12. Fast interpolation flow. 
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D. Bilinear Interpolation 

When the pixel location of the DIS         is obtained, the 

image interpolation attempts to reconstruct a 2-D continuous 

signal,         from its discrete image samples,         . The 

interpolating image space       of the correction is a real 

number, and the sampled image space         of the distortion 

is an integer. The image interpolation can be described 

formally as the convolution of the discrete image samples 

         with a 2-D reconstruction filter,      derived by 

 

        ∑∑                       

    

 (30) 

 

where       and        . To reduce the complexity of 

the interpolation [17],     is converted into 1-D separable 

interpolation as 

 

                         (31) 

 

where   is symmetric. The difference    is the interpolating   

minus the sampled   , and the difference    is similar to   . 

The 1-D bilinear interpolation        uses two adjacent pixels 

to obtain the interpolated pixel value, as follows: 

 

 
        {

               
            

 (32) 

 

Fig. 15 shows the structure diagram of the bi-linear 

interpolator that was implemented based on (30). Because the 

arithmetic includes numerous multiplications and additions, 

the path is excessively long from input x, y to output s. The 

bilinear interpolator uses the pipe-line method to increase the 

operating frequency and throughput. 

 

 
Fig. 15. Implementation of bilinear interpolator. 

 

III. CAMERA CORRECTION SYSTEM 

The memory access action in a real integrated system is 

more complex. This section presents the memory access 

architecture for the NCDC, which was integrated into a real 

system with a camera and implemented in two FPGA 

development boards using SDRAM and DDR3 memory. 

 

A. Fast Integration Interpolation 

Interpolation is the second performance bottleneck in 

camera correction methods. As indicated in Section II, the 

bilinear interpolation must read four pixels from memory to 

interpolate a new pixel in the middle of the four pixels, as 

shown in  

Fig. 17. 

The general image processing flow shown in  

Fig. 16 restores the Bayer image to RGB color space before 

bi-linear interpolation. The RGB space image uses three times 

the memory space and time for storage. The fetch control 

shown in  

Fig. 16 must read R, G, and B pixels, and the bi-linear 

interpolation must interpolate these pixels. 

 

 
 

Fig. 16. Traditional image processing flow. 

 

To reduce the image size and access time, the modified 

image processing flow does not restore the Bayer image of the 

camera. As shown in  

Fig. 17, pixel-mapping can be directly interpolated from the 

pixels in the Bayer color space to the pixels in the CIS space. 

The current and subsequent back-mapped coordinates is in 

the region surround the same four pixels, as shown in  

Fig. 18. Based on the pixel-mapping, the fetch controller 

can reduce access for interpolating the subsequent CIS pixel. 

 

 
 

Fig. 17. Pixels mapping of the bilinear interpolation. 
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Fig. 18. Pixels mapping in DIS image. 

 

 

 
 

Fig. 20 shows the location of pixels from the DIS to CIS in 

the memory space; it is difficult for the distortion image pixels 

to pre-load DIS pixels from the memory space. 

For the unusual memory access action, this study proposes 

fast interpolation arithmetic and flow. As shown in  

Fig. 12, the raw image uses the scheduling control to align 

bytes to four bytes in one row, which can efficiently write 

image data to memory through the Avalon bus. The fetch 

control directly reads four bytes from memory to store the 

Bayer image, and the Bayer pattern decoder restores the 4 

groups of RGB pixels. Finally, the bi-linear interpolation uses 

the RGB pixels to calculate the CIS pixel. 
 

 

 
 

Fig. 20. Pixels location relation from DIS to CIS in memory space. 

B. NCDC with a Terasic DE2-115 Development Board 

To verify the camera distortion correction methods, this 

study proposes a verification system to analyze the real data 

stream between the neural processor and the wide-angle 

camera.  

Fig. 19 shows the proposed verification system that was 

implemented on a Teraisc DE-115 development board with an 

Altera Cyclone IV FPGA device [18], which was produced 

using a 65nm complementary metal–oxide–semiconductor 

(COMS) process.  

The verification system has four subsystems: (1) the MPU 

subsystem consists of an NIOS-II microprocessor, direct 

memory access (DMA), synchronous dynamic random access 

memory (SDRAM), static random access memory (SRAM), 

and flash memory controllers. The NIOS-II processor core is a 

reduced instruction set computing (RISC) architecture, which 

is used to configure and initiate devices in this verification 

system. The microprocessor manages all memory space in this 

system and commands the DMA to move large data from one 

location to another location. 

 

 
 

Fig. 19. Verification System of NCDC in DE2-115. 
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Fig. 21. Avalon bus architecture. 

 

Fig. 21 shows the Avalon bus [19] diagram with slave 

arbitration architecture. In an advanced RISC machine (ARM) 

with advanced microcontroller bus architecture (AMBA) [20], 

the arbiter following the bus uses request signal of the masters 

to determine the master that can access the slave in the bus. In 

contrast to an ARM AMBA bus, the arbiter follows the slave, 

indicating that one layer of the Avalon bus is only one slave. 

As shown in  

Fig. 19, each subsystem has one independent matrix bus 

that is a multi-layer bus and is operated at a respective 

different frequency of sub-system. 

 

Fig. 22 shows the burst read protocol of the Avalon bus, 

which is used to continuously read data from the slave device. 

The master device reads all data from SDRAM or DDR and 

may use approximately 6-22 clock cycles. Because SDRAM 

or DDR memory generally pipe-lines the access command, 

the burst read protocol uses the characteristic of SDRAM or 

DDR memory to read data. Moreover, the integrated hardware 

arithmetic in the Avalon bus is operated at a differing clock 

domain. The burst read controller uses a pipe-line 

“READVALID” handshaking signal to detect valid data from 

the slave device. When starting a burst read action, the 

“READ” signal is asserted to “1,” The “BURSTCOUNT” 

signal is simultaneously set to “0x04,” indicating that the 

master device reads four words data in this burst read action. 

When data is ready to be fetched by the master, the slave 

device asserts the “READVALID” signal to “1”. Based on 

this pipe-line access architecture, the master device can 

continuously originate a read action following the forward 

read action. 

 

 
 

Fig. 22. Burst read protocol of Avalon bus. 

 

 

Fig. 23 shows the burst write protocol of the Avalon bus, 

which is used to continuously write data to the slave device. 

The burst write protocol differs from the burst read protocol. 

Because the write protocol is a one phase action, the burst 

write does not require a handshaking signal to detect valid 

data from the slave device. When starting a burst write action, 

the master device asserts a “WRITE” signal to “1”. The 

master device simultaneously sets 0x04 to the 

“BURSTCOUNT” port, indicating that the master device will 

continuously write four words  to the slave device. Depending 

on whether the “WAITREQUEST” signal is asserted to “0”, 

the master pushes the next word data to the “WRITEDATA” 

port of the Avalon bus. 

 

 
 
Fig. 23. Burst write protocol of Avalon bus. 

 

(2) The camera subsystem shown in  

Fig. 24 consists of a camera capture device, data alignment, 

I2C controller, control register, burst controller, and slave 

wrapper. This camera subsystem can be used in most CMOS 

sensors, which are designed for common purposes. This study 

used two differing CMOS sensors to capture the distortion 

image: (i) the Micron MT9D111 [21] is a 2-Mega-pixel sensor, 

and (ii) the Aptina MT9P014D00 [22] is a 5-Mega-pixel 

CMOS sensor. Most CMOS sensors use a Bayer color filter 

array to fetch light from an object. Generally, the captured 

image passes through a Bayer color interpolation to obtain the 

color image, and the size of the interpolated image increases 

to 3 times its original size. In a camera subsystem, the raw 

data uses the scheduling control to align bytes of a raw image 

to 4 bytes in one row, which can efficiently write image data 

to memory through the Avalon bus. The NIOS-II processor 

can change the operating mode of the CMOS sensor through 

the I
2
C controller, which can access the control register of the 

CMOS sensor. The burst controller can use the burst mode of 

the Avalon bus to write an image to memory. When the burst 

controller writes data, the master monopolizes the slave in the 

Avalon bus, which can continuously write image data in each 

clock cycle. The control register of the camera subsystem is 

used to set its operating mode, and the memory address base is 

managed by the NIOS-II processor. The NIOS-II processor 

manages all memory space and allocates a fixed memory 

space to store the captured image. The address of the allocated 

memory space is written by the NIOS-II processor through the 

Avalon bus. 
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Fig. 24. Architecture of Camera Capture Controller in FPGA. 

 

(3) The Giga-bit Ethernet subsystem shown in Fig. 25 

consists of a medium access control (MAC) [23], description 

ram, read-DMA, and write-DMA. The MAC is used to access 

the data stream in the gateway of an Ethernet network through 

a physical (PHY) chip. Because the data is a stream from the 

MAC, the data stream must write to a memory space through 

the DMA before analysis. However, it is not efficient to use 

hardware arithmetic to analyze and calculate the Ethernet 

package. The half calculation of the Ethernet package is 

calculated by the NIOS-II processor. Moreover, the socket 

server service, which is operated by the NIOS-II processor, is 

used to respond to other clients, which are software programs 

in a personal computer (PC). When using the NIOS-II 

processor to compute several programs, the verification 

system ports a small operating system (OS) (i.e., uC/OS II) to 

manage multiple tasks. 

 

 
Fig. 25. Giga-bit Ethernet subsystem. 

Fig. 27 shows a photograph of a real verification system on 

FPGA, which consists of a wide-angle lens, a 5M-pixel 

CMOS sensor, Altera Cyclone IV FPGA device, 64MB 

SDRAM, and 1 Gb Ethernet PHY. 

 

 
Fig. 27. Verification system on Terasic DE2-115 development board. 

 

 
Fig. 28. GUI of client software for Ethernet and DE2-115. 

 

 
 
Fig. 26. Verification System of NCDC in FAKA2 development board. 
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Fig. 28 shows the graphical user interface (GUI) of client 

software on a PC, which is used to access the verification 

system on the FPGA development board through the Giga bit 

Ethernet. The software program of client uses the QT library 

[24] to build executable file for PC, and the software can re-

build on Linux or other OS platforms. The interface can 

directly change the mode of the CMOS sensor, such as shutter, 

exposure time, image size, image formation, and capture 

speed. When using the Ethernet, the interface can access 

multiple verification systems simultaneously. Conversely, one 

verification system on the FPGA device can be operated by 

multiple users from anywhere simultaneously. 

TABLE I shows the communication protocol between the 

client interface and the FPGA development board, which can 

control the I
2
C controller in the verification system. 

 

TABLE I 

COMMUNICATION PROTOCOL. 

Operating 

code 

Address Data  Function description 

0x80 2 bytes 2 bytes Read setting from CMOS 

sensor register. 

0x81 2 bytes 2 bytes Write setting to CMOS 

sensor register. 

0x82 - - Reserve. 

0x83 - - Receive an MRAW 

package. 

 

TABLE II shows the formation of the MRAW packet. 

When the client interface sends the 0x83 operating code 

command (OPC) to the verification system, the NIOS-II 

processor controls the camera subsystem to capture a 

distortion image. The neural processor immediately corrects 

the distortion image and writes the corrected image to 

memory. The NIOS-II processor prepares the MRAW 

package and sends the package to the client through the 

Ethernet. 

TABLE II 

MRAW PACKAGE FORMATION. 

Packet structure Length  Description 

Width 4 bytes Image width. 

Height 4 bytes Image height. 

Formation 1 bytes Image formation. 

Size 7 bytes Image size. 

Socket IP 4 bytes Ethernet IP of verification system. 

Socket Port 4 bytes Ethernet port of verification system. 

Capture 

time 

4 bytes Capture time from camera subsystem. 

Image Size 

bytes 

Captured image. 

 

Because several sub-systems share the SDRAM, as shown 

in  

Fig. 19, most memory access commands wait until the 

current access command is completed. The interpolator in the 

back-end waits for the pixels to be fetched from the memory. 

Because the back-end cannot manage the back-map 

coordinates from the front-end, the clock gating controller 

stops the clock of the front-end until the buffer of the back-

end is almost empty. 

 

 
Fig. 29. Front-end of the NCDC. 

 

Because the NCDC always waits for the SDRAM, the 

efficiency is low. To increase the efficiency of the system, a 

new development board was designed to improve the memory 

latency problem. 

 

C. NCDC with FAKA2-FPGA Development Board 

The specially designed FAKA2-FPGA development board 

shown in Fig. 31 consists of an Altera 28nm Cyclone V device 

and a 256MB DDR3 SDRAM. 
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Fig. 31. FAKA2-FPGA Development board. 

 

As shown in Fig. 31, the Terasic camera module and 

USB2.0 transceiver chip use a bridge board to connect with 

the FAKA2-FPGA.  

Fig. 32 shows the USB2.0 controller in FPGA, which can 

transmit and receive data between the host of a PC and the 

correction system in FPGA.  

 

Fig. 33 shows the GUI of client software on a PC, which is 

used to access the verification system on the FAKA2-FPGA 

through the USB2.0 transceiver chip. 

 

Fig. 30 shows the multi-port access architecture for the 

NCDC, which uses 3 memory readers to send the burst read 

command to fetch the 3 pixels from the DDR3 SDRAM. 

Therefore, the controller can fetch 9 pixels required for the 

fast interpolator in one access command. For verification, the 

interpolated pixels use a memory writer to write memory after 

a fast interpolation operation. If the NCDC system is applied 

to other applications, the memory writer can be changed to a 

stream source interface that is similar to a camera interface. 

 

 
 

Fig. 32. Architecture of FTDI FT2232H USB2.0 Controller in FPGA. 

 

 
 

Fig. 33. GUI of client software for USB2.0 and FAKA2-FPGA. 

 

IV. EXPERIMENT 

 
 

Fig. 30. Back-end of NCDC in FAKA2-FPGA. 
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Using the NCDC with the DE2-115, the GUI shown in Fig. 

28 captures the distortion image in Bayer color space from the 

camera with a 105° wide-angle lens.  

Fig. 34 shows that the non-distortion color image has 

1280x1024 resolution, which was corrected by the NCDC in 

the DE2-115. 

 

Fig. 35 shows the image captured by the 1280x1024 

resolution camera with a 105° wide-angle lens, and clearly 

shows barrel distortion. 

To determine whether the corrected result is preferable to 

that of the PBM or the NCDC, this study used the Hough line 

detection [25] method to find the straight line in the corrected 

images.  

Fig. 36 shows the line detection result of the PBM method, 

which missed some lines on the periphery of the corrected 

check-board image.  

Fig. 37 shows the line detection result of the NCDC, which 

provided differing results to those in  

Fig. 36 because it did not miss lines on the periphery of the 

corrected check-board image. 

 

 
 

Fig. 34. Corrected Image by NCDC with DE2-115. 

 

 
 

Fig. 35. Captured image from 105° wide-angle camera. (1280*1024) 

 

These results show that the NCDC is more accurate in 

correcting the camera distortion caused by the camera, lens 

distortions, and various manufacturing flaws. 

 

Fig. 38 shows the captured Bayer color image of the 

1920x1080 resolution camera with a 120° wide-angle lens, 

and clearly shows barrel distortion. 

 

Fig. 39 shows the corrected image of a 120° wide-angle 

camera using NCDC. Because the full-width range of the 

distortion image is shown in  

Fig. 38, the corrected image in  

Fig. 39 is smaller than that in  

Fig. 38. The NCDC in FAKA2-FPGA simultaneously 

corrects the distortion of the camera and scales the image size 

to fit 1920 pixels for image width. 

TABLE III shows an error comparison of the NCDC results 

obtained using four to six neurons in the hidden layer and the 

PBM with six to eight polynomial orders. Using floating-point 

software for the 120° wide-angle lens, the results show that 

the MSE reaches 0.037571 when four neurons are in the 

NCDC, and the maximal error is 1.40221260 pixels. When 

seven neurons are present, the maximal error in the whole 

image is under 0.32898513 pixels. However, in this camera 

sensor, the pixel width is 2.8 μm. If the neuron number is 

greater than four, the difference in the corrected image cannot 

be observed by the human eye. Therefore, the optimal neuron 

number was four for the 1920x1080 pixel camera with a 120° 

wide-angle lens. Although the chip area of the NCDC is 10 

times larger than that used by Asari [8], the NCDC is 429 

times more accurate than the six-order PBM based on the 

Asari method for 105° wide-angle lenses. 

 

 
 

Fig. 36. Line detection of PBM corrected image. 
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Fig. 37. Line detection of NCDC corrected image. 

 

Because the hardware arithmetic uses a fixed point with the 

120° wide-angle lens, some of the correction errors originate 

from the transformation errors of the floating-point 

coordinates. When the floating point is used, the operating 

range for the NCDC is approximately -1 to 1. However, to use 

the pipeline register width of the VLSI architecture efficiently, 

the range of the NCDC with a fixed point is -0.9999 to 0.9999. 

The results show that the MSE reaches 0.150788011, similar 

to the case with the NCDC hardware arithmetic with four 

neurons, and the maximal error is 1.170525455 pixels. 

 
 

Fig. 38. Captured image from 120° wide-angle camera. (1920*1080) 

 

 
 

Fig. 39. Corrected image of 120° wide-angle camera using NCDC in FAKA-
FPGA 

 

TABLE III 
COMPARISON OF CORRECTION PRECISION ERRORS FOR 105° AND 120° WIDE-

ANGLE LENSES. 

PBM Order 

(N) 

Lens MSE Avg. 

Error 

Max. 

Error 

 6 105° 87.9597 7.8584 21.1068 

 7  87.9452 7.8571 20.9047 

 8  87.9316 7.8566 20.8914 

NCDC Neurons 

(HN) 

    

 4 105° 0.205017 0.252331 4.621188 

 5  0.021510 0.104972 0.573920 

 6  0.005172 0.047855 0.357827 

 4 120° 0.037571 0.122573 1.402213 

 5  0.007127 0.056211 0.435714 

 6  0.004582 0.044143 0.353196 

 

Wide-angle camera distortion correction is a crucial 

function in medical and manufacturing equipment. However, 

the distortion correction of the camera is a complex 

computation that uses a graphic processing unit (GPU) to 

correct the distortions in medical applications [1]. In industry 

applications, LabView [26] (National Instruments Corporation) 

is commonly used to correct the camera for quality testing on 

production lines, which use traditional camera distortion 

models to correct camera distortions. LabView was run on an 

Intel i7 3.9Ghz PC with Dual Channel 1666 DDR3 SDRAM, 

which requires 0.7888 s to correct a gray 19201080 pixels 

image. The NCDC in DE2-115 with SDRAM requires 2.1346 

s to correct a color 12801024 pixel image. The image of the 

NCDC in DE2-115 has 1.8963x more pixels than that of the 

image in LabView. Therefore, the performance of LabView is 

1.4285x higher than the NCDC in DE2-115. As shown in 

TABLE IV, the NCDC in FAKA2-FPGA with single DDR3 

SDRAM requires 0.1219 s to correct a color 19201080 

pixels image. Therefore, the performance of the NCDC in 

FAKA-FPGA is 19.3929x higher than that of LabView. 

 

TABLE IV 

CORRECTION PERFORMANCE 

Method Memory Resolution Time (s) FPS 

LabView [26] 

in Intel i7 

Dual Channel 

DDR3* 

19201080 

Gray 

0.7880 1.27 

NCDC in 

DE2-115 

SDRAM 12801024 

Color 

2.1346 0.47 

NCDC in 

FAKA2 

DDR3 19201080 

Color 

0.1219 8.21 

 

V. CONCLUSIONS 

This study used efficient system architecture in FPGA for 

camera distortion correction to rapidly and accurately correct 

various lens and manufacturing flaws in low-cost cameras. 

For the NCDC with four neurons, the results show that the 

maximal corrected error in a whole image is less than 1.4 

pixels, and the MSE approaches 0.0376 between the corrected 

and ideal results. The proposed novel neuron-based method is 
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more suitable than the traditional method to correct numerous 

asymmetric manufacturing defects in low-cost wide-angle 

cameras. Moreover, this study designed a FAKA2-FPGA 

development board for the NCDC. The proposed architecture 

of the NCDC with the FAKA2-FPGA development board has 

more than 19.3929x the performance than the popular 

professional solutions, indicating that the NCDC can be used 

for applications that do not require a high frame rate. For real 

time applications, such as medical endoscopy, the back-end of 

the NCDC can reduce the camera resolution to under 

1024768 pixels, or increase the operating frequency to 

increase the bandwidth usage rate of the DDR3 SDRAM. 
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