

 Intelligent Rubik's Cube Solver
 Chun-Fei Hsu, Shih-An Li, Szu-Hao Lien, Han-Sheng Chang, and Yu-Cheng Lai

Department of Electrical Engineering, Tamkang University

E629, No.151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (R.O.C.)

fei@ee.tku.edu.tw

lishyhan@ee.tku.edu.tw

Abstract—This paper is describes using an FPGA chip to solve a

Rubik's Cube. A CMOS camera is used to sense the colours of

Rubik's Cube. NXT motors and a Lego building blocks construct

a hand-like mechanical structure to push and turn the Rubik's

Cube. We build a SOPC system and a Nios II processor is used to

recognise the colors of Rubik's Cube and calculate the resolving

actions of Rubik's Cube.

Keywords— Rubik's Cube; Artificial Intelligence; FPGA; NXT

I. INTRODUCTION

Nowadays emphasis on computerized machines,

intelligence era, the application of automated machinery and

equipment rather attention, because is the application of

automation equipment can reduce people need to pay labor

force, increasing production volume, and engage in hazardous

work.

We use an FPGA-based system architecture, using the

found formulas of calculation, CMOS camera for the sense of

sight, NXT motor and Lego to build the structure and achieve

turning around the magic square and solve this equation.

We hope artificial intelligence can be embedded in robots

in the future and let them get more abilities to solve more

problems for servicing humans.

II. MECHANISM DESIGN

Design and implementation of FPGA-based to solutions for

Rubik's Cube Robot, and using the Lego design portfolio.

Therefore, to reduce cost and time of development, as shown

in Fig.1., using the CMOS camera to solution six sides for the

Rubik's cube. The FPGA based image processing detects

colors on the face of a Rubik's cube, by using image

processing techniques to analyse the cube's color distributes of

condition, and the steps required to calculate the solution

Rubik's Cube.

Fig. 1 Rubik's cube solving machine

Because the restriction of machine set design, the robot can

only do to turn-over of push action and situ rotation of

changing face of transfer action, and arm grip box to Spin box

of the bottom, as shown in Fig. 2 and Fig. 3 and Fig. 4. For

matching with a solution the action produced by machine, if

the certain color revolves however many degrees, then we

have to move the color's surface to the bottom, then clip the

first surface of revolving. The robot's actual problem-solving

action must be designed to solve the Rubik's Cube.

Top

Behind

RightLeft

Front

Bottom

Fig. 2 Rubik's Cube six definitions of positions

2

T : Turn

Fig. 3 Flip the Rubik's Cube

R : Forward

L : Reversion

Fig. 4 Rotate the Rubik's Cube

III. SYSTEM ARCHITECTURE

FPGA-based system architecture ,using the found formulas

of calculation, CMOS camera for the sense of sight , NXT

motor and Lego to build the structure and achieve turning

around the magic square and solve this equation

CMOS

Moudle

CCD

Capture

RAW

2RGB

NIOS

LTM

MM

S M

LCD

Timing

Controller

LTM

Module

R G B

Avalon bus

S M

CMOS

Master

DCFIFO

SDRAM Flash

DE0-Nano.sopc

I/O card

DC Motor
Optical

encoders

Servo Motor

Fig. 5 System Architecture

IV. SERVO MOTOR

Fig. 6 Internal structure of the motor

This motor is NXT motor, includes a rotation encoder,

returning to the NXT the position of the shaft with 1°

resolution. Because of the special connector of this motor

(non-standard phone plug type), a cable adapter is required to

drive this motor with regular 9V sources. Not recommended

for use with a RCX which can't deliver the high current that

this motor can consume. Slow rotation speed, minimizing the

need of external gear train.

Speed is controlled using Pulse Width Modulation, and the

AVR controller handles PWM generation. Feedback is

provided by a quadrature encoder attached to the motor, and

allows detection of rotation direction and amount

Each LEGO Smart Motor includes a built in encoder that

can be used to program the robot to move around in a very

precise manner. The built-in encoder has a resolution of 360

counts per revolution of the axle or one tick per degree.

Therefore every time the robot wheel spins one wheel rotation

the robot counts 360 encoder counts.

The gear reduction alone involves eight different gears, and

because the Rotation Sensor is way back by the motor end, it

has one degree of revolution on the output shaft.

Encoder wheel and enclosure back parts. We have 12 slits

in encoder, and motor to encoder gear reduction is 10:32. So

for 1 turn of output hub, encoders turns 48*10/32=15 turns,

optical detectors sees 15*12=180 slits. Using both sides of

slits gives nominal 360 ticks per turn resolution.

The encoders work by sending out a pulse every time you

rotate the shaft. There are two encoders in each motor. The

two output waveforms are 90 degrees out of phase, these

signals are decoded to produce a count up pulse or a count

down pulse. When rotating the shaft, the pulses will look like

this:

Pulse A

Pulse B

Slow rotation Fast rotation

Fig. 7 Forward movement

Encoder

3

Pulse A

Pulse B

Slow rotation Fast rotation

Fig. 8 Backwards movement.

V. I/O CARDS

In this paper, use the Home-made I/O Card, as shown in

Fig. 9 and Fig. 10. Include rotary encoder of decoder count,

motor drive IC, 4-channel D/A , 2-Channel ADC and power

supply. DC-rated voltage of 15V, and the output voltage 7.5V

to supply other sensors and control panel. In the custom-

designed I/O Card below, there is a 2-channel motor

transmission port that transport PWM signals to control DC

motor and receive motor feedback signal.

After the optical decoder, by the I/O card export to DE0

NANO board. The DAC made observed signal with

TLV5636IC after conversion to the oscilloscope, observation

data within the system status changes.

Fig. 9 Home-made I/O Card

Motor

2

Motor

1

Power

Output

DC7.5V Power

Supply

40PIN

N-None

G-GND

DAC(TLV5636)

PIN: (GND,DAX)

DA1~DA4: Bipolar Output(-5V~5V)

ADC(TLC2551)

PIN: (5V,ADX,GND)

1.Motor output1

2.Motor output2

3.GND

4. 5V

5.Encoded input1

6.Encoded input2

Power

Input

DC15V

Fig. 10 Illustration of Home-made I/O Card

A. Motor drive IC

In this I/O card, use TA7291 of the motor drive IC, where

the schematic is shown Fig.3. TA7291 use to control the DC

motor,IN1 and IN2 which can be as forward ,backward, stop,

and brake control and direction of such action., Vref is in

accordance with the size of the input voltage to change the DC

motor speed.

The higher the voltage Vref, the quicker the DC motor

speed is. The lower voltage Vref, the slower the DC motor is.

The DC motor positioning control system architecture

diagram is shown Fig. 11.

Algorithms Motor driver
(TA7291)

DC
motor

Optical
encoders

Count decoder

Servo motor

Fig. 11 DC motor positioning control system architecture diagram

Fig. 12 TA7291 Schematic

B. Analog-to-digital converters (ADC)

The TLC2551 is a 5-V supply, 12-bits low-power,

miniature, CMOS analog-to-digital converters (ADC) with

auto power down, as shown Fig. 13.

Fig. 13 TLC2551 IC

C. Digital-to-analog converters DAC

The TLV5636 is a 2.7-V to 5.5V, 12-bit low-power, digital-

to-analog converters (DAC) with internal reference and power

down, as shown Fig.14.

4

Fig. 14 TLV5636 IC

D. Count decoder

The rotary encoder is an optoelectronic method to convert

mechanical rotation angle of the shaft for precision sensor of

the digital signal output, include incremental rotary encoders

and absolute rotary encoders.

Using the optoelectronic incremental encoder method is the

uniform grating on the pulse Transducer rotates together with

the shaft and the transducer will distribute evenly in light

transmission section and blackout section.

Incremental encoders have not a fix zero point, the output is

proportional between the increment of angle and pulse and the

pulse number counter. It will send a pulse signal in each turn

photic zone and then the will count one pulse to calculate the

increment of angle.

The single-channel incremental encoder has only one pair

of optical couplers, so it can only send one pulse sequence.

The AB phase encoder has two pairs of internal opt

couplers; it outputs the phase difference of 90 between two

sets of pulses. Forward and reverse pulses will be leading or

lagging in same time.

B phase pulse is rising and A phase pulse is just opposite

then forward and reverse. So by using AB phase encoder we

can confirm the direction by rotation of the shaft easily.

VI. DE0-NANO

The DE0-Nano board introduces a compact-sized (49 mm x

75 mm) FPGA development platform suited for prototyping

circuit designs such as robots and "portable" projects. The

board is designed to be used in the simplest possible

implementation targeting the Cyclone IV device up to 22,320

LEs.

Fig. 15 DE0-Nano

The DE0-Nano has a collection of interfaces including two

external GPIO headers to extend designs beyond the DE0-

Nano board, on-board memory devices including SDRAM

and EEPROM for larger data storage and frame buffering, as

well as general user peripheral with LEDs and push-buttons.

The advantages of the DE0-Nano board include its size and

weight, as well as its ability to be reconfigured without

carrying superfluous hardware, setting itself apart from other

general purpose development boards. In addition, for mobile

designs where portable power is crucial, the DE0-Nano

provides designers with three power scheme options including

a USB mini-AB port, 2-pin external power header and two

DC 5V pins.

DE0-Nano Board Features

Cyclone® IV EP4CE22F17C6N FPGA

 22,320 Logic elements (LEs)

 594 Embedded memory (Kbits)

 66 Embedded 18 x 18 multipliers

 4 General-purpose PLLs

 153 Maximum FPGA I/O pins

Configuration Status and Set-Up Elements

 On-board USB-Blaster circuit for programming

 FPGA Serial Configuration Device (EPCS)

Expansion Header

 Two 40-pin Headers (GPIOs) provides 72 I/O pins

 Two 5V power pins, two 3.3V power pins and four

ground pins

 One 26-pin header provides 16 digital I/O pins and 8

analog input pins to connect to analog sensors, etc

Memory Devices

 32MB SDRAM

 2Kb I2C EEPROM

General User Input/Output

 8 green LEDs

 2 debounced push-buttons

 4 dip switches

G-Sensor

 ADI ADXL345, 3-axis accelerometer with high

resolution (13-bit)

A/D Converter

 NS ADC128S022, 8-Channel, 12-bit A/D Converter

 50 ksps to 200 ksps

Clock System

 On-board 50MHz clock oscillator

Power Supply

 USB Type mini-AB port (5V)

 Two DC 5V pins of the GPIO headers (5V)

 2-pin external power header (3.6-5.7V)

VII. NIOS II IMAGE CAPTURE

We process color image via the Nios II system. Using

CMOS camera (shown in Fig. 17) to capture color image,

processing by FPGA and transform to image by VGA

controller. We use 8 bits of data in the FPGA operation, which

range of gray is from 0 to 255. The size of the image is

800×500. It means the image has 800 rows of pixels and 500

columns of pixels, totalling 400000 pixels in every image.

System work step is as follows: Using a CMOS camera for

capturing an image, there is an output 8-bits integer signal to

DE0-Nano (shown in Fig. 18) to collect signal, preprocess

5

image and save image after collecting image data and then

wait for FPGA to process. After the FPGA processes

successfully, the input image signal VGA controller displays

on the in LTM (shown in Fig. 19) monitor and the system uses

JTAG to download the image. Fig 1 is the actual pin map.

A. Avalon Bus

Avalon Bus connects to the processor and peripheral

devices, support for peripheral devices and transfer operations

support multiple bus master device and access.

Fig. 20 is the system architecture of Avalon Bus.

Fig. 16 actual pin map

Fig. 17 CMOS camera

Fig. 18 DE0- Nano

Fig 19 LTM

Nios II
DMA
Master

Accelerator

Avalon Bus#1 Avalon Bus#2 Avalon Bus#3

SDRAM

Arbiter

Fig. 20 Avalon Bus Master System

VIII. NIOS II IMAGE PROCESS

In this section, we will catch each surface of Rubik's Cube

and analysis the RGB value of each surface. As shown in

Fig.21, we first catch each surface of Rubik's Cube, and save

to disk as a bmp file. Because the center square of each

surface will never move. This is because the square is the axis

of the cube. In addition to, it’s also the basis when detect the

color of each surface. Table I. is the color Sample of Rubik's

Cube.

TABLE I

THE COLOR SAMPLE OF RUBIK'S CUBE

6

a.(white)

b.(yellow)

c.(orange)

d.(green)

e.(blue)

f.(red)

Fig. 21 Six surface image of the Rubik's Cube

After getting the information of Rubik's Cube, we need to

distinguish the background image and cube image. As shown

in Fig. 22. We drawing a red rectangle along on the edge of

cube image and define the range as the detection in range.

Fig. 22 Sample of Image Cpature

According to the RGB sample result of Table I, we test

against to nine square of each surface. Here we use white

surface (1) to detect, getting the average pixel of nine squares.

The result is shown in Table II. White square has bigger

deviation because of the trademark. In order to solve the

problem, we increase the detection range of center square.

7

TABLE II

THE RGB VALUE OF (1).

R : 0

G : 26

B :30

R : 255

G : 56

B :0

R : 166

G : 162

B : 172

R : 0

G : 24

B : 26

R : 159

G : 154

B : 151

R : 0

G : 0

B : 75

R : 0

G : 0

B : 71

R : 140

G : 0

B : 0

R : 170

G : 164

B : 174

Through the predicate of program to classify the color of

(1). yellow classify to 1, green classify to 2, red classify to 3,

orange classify to 4 blue classify to 5 , white classify to 6.

Use 3x3 matrix to illustrate we will obtain as follows:

WhiteSurface (1)

RedSurface (2)

OrangeSurface (3)

YellowSurface (4)

GreenSurface (5)

BlueSurface (6)

If we make the value of each surface as an unfolded map,

we will find a more obvious color distribution. As shown in

Figure 8., the axis is fixed and it is the color basis of the origin

surface. If we observe other four adjacent surfaces, Red, green,

orange and blue must be arranged in a clockwise, while the

other side must be yellow.

Fig. 23 unfolded map of Rubik's Cube

IX. RUBIK'S CUBE SOLUTION

First, we must define the Rubik's cube six faces of the code

and its corresponding color, shown in Fig. 24.

Fig. 24 Rubik's Cube six face color and code

While rotating the cube, the top face colors are scanned

using the CMOS camera. Now we can begin solve Rubik's

cube.

Most people would think that a Rubik's Cube is a plane

surface solution, but the solution is actually Rubik's Cube

layer by layer to the solution, the basic solution is make the

first layer’s color the same and the second layer, the final

layer. This basic transfer method called LBL, which is Layer

By Layer.

But the Rubik's Cube using LBL solution required too

many rotations, so we opted to change to use CFOP quick

solution. The improvement is enhanced by the basic solution

made using about 80 algorithms, rotating number of steps can

be reduced to about 50-70 steps, mainly can be divided into

the following four steps, shown in Fig. 25.

A. Cross

The cross is done intuitively. The cross is done in eight

moves or less, though in over 99% of the cases it can be done

in 6 moves.

8

B. First two layers (F2L)

The strategy here is to join a corner of the first layer with

the edge that goes above it, and then insert that pair.

C. Orient last layer (OLL)

OLL consists of 57 different algorithms. This stage

involves manipulating the top layer so that all the top cubes

have the same colour on top.

D. Permutation of Last Layer (PLL)

The final stage involves moving the pieces of the top layer

while preserving their orientation. There are a total of 21

algorithms for this stage.

CROSS

F2L

OLL

PLL

Fig. 25 CFOP solution Process

REFERENCES

[1] Bob Burton (2005-2012) Cubewhiz.com. Available:

http://www.cubewhiz.com

[2] Hans Andersson (2011) Tilted Twister 2.0. Available:
http://tiltedtwister.com/tiltedtwister2.html

[3] Unifish unicube.tw. Available: http://www.unicube.tw/

[4] Terasic Technologies Inc (2013). Available:http://www.terasic.com.tw
[5] Po-nien Pao. (2010) Design of a Rubik's Cube Solver Robot using

Matlab RWTH toolbox[Online]. Available:http://ndltd.ncl.edu.tw/cgi-

bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22098CHPI5442034%22.&sea
rchmode=basic

[6] http://en.wikipedia.org/wiki/Lego_Mindstorms_NXT#Technical_speci

fications, Wikipedia NXT introduction

[7] Rubik's Cube Solution Methods by Josef Jelinek
Available:http://rubikscube.info/

[8] Youtube: Robot shows how to solve Rubiks Cube Available:
http://www.youtube.com/watch?v=bNAnUygqOYc&feature=related

[9] Youtube: Danny's fully automated Lego Rubik's cube solver Available:
http://www.youtube.com/watch?v=htnL1KTpaY8&feature=related

[10] Herbert Kociemba. Cube Explorer.http://kociemba.org/cube.htm, 2006.
[11] http://www.erobot.com.tw (K-Kingdom)

http://rubikscube.info/

