

 The Implementation of Triple-Disk-Failure

 Tolerant RAID
 1

Ming-Haw Jing,
2
Yao-Tsu Chang,

3
Chong-Dao Lee, and

1
Kai Su

1Department of Information Engineering, I-Shou University
2Department of Applied Mathematics, I-Shou University

3Department of Communication Engineering, I-Shou University
Kaohsiung, Taiwan

 mhjing@isu.edu.tw, ytchang@isu.edu.tw,

chongdao@isu.edu.tw, isu10103004m@isu.edu.tw

Abstract – A brand new algorithm of RAID for tolerating triple

disk failures is presented in this paper. A prototyping system is

built on Altera FPGA DE2-115 board. To build this system, the

PC and FPGA board are integrated to perform as the system

development platform to increase the visualization of details

inside the system. Also, this platform is used to transfer the

designs from the original simulation software into engineering

system using HW and SW co-design concept. The advantage of

this platform is that the developer can do the algorithm proof,

component/module design, testing and system integration

efficiently. In the future, such triple-failure recovery technique

should be widely used in storage system, network and cloud

computing.

Keywords—RAID; Fault-tolerance; HDD failure; FPGA;

platform

I. INTRODUCTION

In recent years, the function of web services and data

center grows sharply. Many Internet/cloud service providers

offer huge online storage services to the users. How to restore

the lost data, increase access speed, and increase security to

allow users to have confidence in using cloud storage, is an

important subject. The RAID (Redundant Arrays of

Inexpensive Disks) technology for storage reliability can offer

an effective way to large online storage services.

The size of RAID may combine from multiple hard disks to

ultra large number of hard drives. In internet application, the

concept of RAID can have data blocks spread into multiple

hard drives or domain in network which may increase the

reading speed and tolerate failures. In most RAID, restoration

algorithms are used to generate redundant data and having the

ability to recover data from failure drives.

Nowadays there are many algorithms used to tolerate two

disk failures, such as RAID 6. Because today's cloud service

providers have the storage demand growing abruptly with the

requirement for data integrity. So, tolerating more data errors

is a trend. The RAID 7.3 design can provide simultaneous

three-fault tolerance or may extend higher demands. This

paper proposes a RAID 7.3 algorithm and attempts to

establish a RAID prototype system. This algorithm uses the

math of finite field. The operation of finite field is easily

realized in the software, but the software version of RAID 7.3

system will consume large amounts of CPU time and power

consumption. So this project will develop hardware modules

to reduce these problems relating to speed and efficiency.

Fortunately, the FPGA (Field-Programmable Gate Array) has

high advantage to implement the prototyping system with the

requirement of the hardware software design. In FPGA, one

can replace slow software modules with hardware and then it

can lower the power consumption of the modules. Also,

FPGA has the advantage of low cost, good developing

efficiency, long-term maintainability, online update

capabilities and other features. Therefore, in view of the above

reason, we choose to use Altera DE2-115.

Fig. 1A The RAID has single disk failure

Fig. 1B The RAID has double disk failures

Fig. 1C The RAID has triple disk failures

2

The RAID technology for two erasures or less, has used

for many years, however, we can develop a new solutions of

triple disk failures and may even more expanded to multi-disk

failures [1]. The RAID 7.3 can tolerate triple disk failures, as

shown in Fig. 1A, 1B, 1C. It not only can only be applied to

hard disk, but also may apply to channels in internet such as

hard drive, RAID, networking, cloud, supercomputers, etc.

The future wireless Internet bandwidth has been increased

and magnetic hard disk price is cheaper, huge storage will be

used. If there are high fault tolerances in network storage, it

will bring users to have a higher level of confidence to

internet storage. In future the network storage will have not

only the size of storage, but also the have requirement in

expanding performance and reliability of the storage in server.

If most customers choose to store data in the network, the

future market of reliable storage will be very big.

II. THEORETICAL BACKGROUND

Theoretical background of this paper we will be briefly

covered here.

A. Finite Field ：

The size of Galois Field GF(2
8
), as Anvin had mentioned

[2], can be small or large in this application, however, a

smaller field would limit the number of drives possible, and a

larger field would require extremely large hardware/tables.

Therefore, we adopt the most efficient GF(2
8
) in here.

GF(2
8
) allows up to a number of 255(2

8
-1) hard drives

used in a data storage. It’s because GF(2
8
) is a generally used

cyclic field. Here we use GF(2
8
)= x

8
 + x

4
 + x

3
 + x

2
 + 1 as

irreducible polynomial in this application.

Galois field has several characteristics in following

explanation.

 The addition field operator (+) is represented by XOR.

 The 0 is represented by {00} in hexadecimal.

 A + A = A - A = {00}.

 A
n．A

-n
= {01}.

 If S= a7x
7
 + a6x

6
 + a6x

5
+ a4x

4
+ a3x

3
+ a2x

2
+ a1x

1
+ a

0，

x={02}，S multiply (．) by x is implemented by the

following relations：

S．x
0
 = a7x

7
 + a6x

6
 + a5x

5
 + a4x

4
 + a3x

3
 + a2x

2
 + a1x

1
 +

a0

S．x
1
 = a6x

7
 + a5x

6
 + a4x

5
 + (a7+a3)x

4
 + (a7+a2)x

3
 +

(a7+a1)x
2
 + a0x

1
 + a7

S．x
2
 = a5x

7
 + a4x

6
 + (a7+a3)x

5
+ (a7+a2+a6)x

4
 + (a7+a1+

a6)x
3
 + (a0+ a6)x

2
 + a7x

1
+ a6

The above presentation is considered as a Linear Feedback

Shift Registers (LFSR) by hardware engineer as shown in Fig.

2, however, the mathematicians are considered that is a

Boolean polynomial multiplication modulo the irreducible

polynomial. The polynomial, x
8
 = x

4
 + x

3
 + x

2
 + 1={1D}, is

used in RAID 6 core algorithms.

Fig. 2 LFSR

As an example, the power of {02} is presented in Table I.

From Table I, if we use x
8
 = x

4
 + x

3
 + x

2
 + 1={1D} as the

irreducible polynomial, there are all 255 elements can be

created.

TABLE I. The presentation of {02n}

n 0 1 2 3 4

{02
n
} {02

0
} {02

1
} {02

2
 {02

3
} {02

4
}

results {01} {02} {04} {08} {10}

n 5 6 7 8 9

{02
n
} {02

5
} {02

6
} {02

7
} {02

8
} {02

9
}

results {20} {40} {80} {1D} {3A}

n 10 11 12 13 14

{02
n
} {02

10
} {02

11
} {02

12
} {02

13
} {02

14
}

results {74} {E8} {CD} {87} {13}

n 251 252 253 254 255

{02
n
} {02

251
} {02

252
} {02

253
} {02

254
} {02

255
}

results {D8} {AD} {47} {8E} {01}

B. Parity Check：

In general checking application, the commercial RAID

uses simple parity checking mostly, as shown in Fig. 3A [3].

In encoding procedure, we firstly XOR the original

information to get a redundant data as called parity, we have 8

Bytes in this example. This redundant parity is stored with the

information together and is called codeword which is

expanded from 8 Bytes into 9 Bytes.

 After received this information, as shown in Fig. 3B, the

received data is also XORed to get a new parity. We check the

new parity with the received one for error checking. These

checking operations may only limit to the error detection

function.

Fig. 3A A group parity check

Fig. 3B An erasure

In this situation, if one wants to correct the error and the

error position is known, it is called erasure. Taking Fig. 3B as

3

an example, the error position is known so that one may

collect all other data as well as the redundant parity to do

simple XOR operation to recover the data, it is 6. Since there

is only a redundant parity, one cannot correct the error with

unknown position.

From above, there is boundary for error correction with

respect to the redundant information. One redundancy may

only resolve one set of information for correction because one

error correction needs two set of information, including

position and value of this data in protected array.

About the single erasure as above, we assume that we

know the position of the fail disk. In case of one more disk

failed, one redundancy will not be able to recover this disk

and is called a crash of the storage system.

C. RAID 6 ：

Fig. 4A The parity P and Q are stored in independent disks in RAID 6

Fig. 4B The parity P and Q are spread into all disks in RAID 6

RAID 6 has one more parity checker, Q, out of RAID 5, it

is enhanced to tolerate double disk failures. For the

development of RAID 6, there are many researches using

different coding methods to achieve higher performance with

different algorithms.

In general, there are two designs of data array in RAID 6,

the horizontal codes as shown in Fig. 4A and vertical codes as

shown in Fig. 4B [5]. The main differences between those two

are that the arrangement of parity checkers is in different

directions, such as in row, diagonal or column direction of

data array. Different codes may have various designs and

usages; they include EVENODD [6], RDP [7], Liberation

Code [8], Anvin, B-Code [9], X-Code [10], P-Code [11], etc.

D. RAID 7：

In design of RAID 7 [4], there is no unique standard in

names. Recently, RAID 7.1 is denoted for single disk failure,

like RAID 5; RAID7.2 is for simultaneous double disk

failures, like RAID 6; RAID 7.3 is for simultaneous triple disk

failures.

III. RAID 7.3

In this section, RAID7.3 algorithm is explained with the

definition, the structure is as Fig. 5.

Fig. 5 The structure of RAID 7.3

Firstly, we define parameters, D, is the data in data disks, n

is the number of data disks, m is the number of the row array

in the whole set of data disks, and P, Q, R are 3 independent

parities in each row array. Here the whole three set of P, Q, R

are assumed storing in three parity disks. The P, Q, R in each

row array are created by one set of functions { , , }

using the math of finite field. The definition of P, Q, and R is

defined as follow:

The above equation may also be present as a matrix form

as:

[

] [

] [

]

Here, { , , } is actually represented as { , , }. The

choice of parameter affects the value of n or the maximum

number of disks in the RAID, and in this case, the use of { , ,

 } supports the size of n≦255.

To correct erasure(s), there are three situations including

single, double, or triple disk failure(s). There are

corresponding methods of various situations in solving the

erasure(s), as shown in Table II.

4

TABLE III A.

Solving Equation for single disk failure

Single disk failure

Error location Solving Equation

 ∑

P ∑

Q ∑

R ∑

TABLE IIII B.

Solving Equation for double disk failures

Double disk failures

Error location Solving Equation

P & Q ∑

 ∑

P & R ∑

 ∑

Q & R ∑

 ∑

Dx & P

1.Get Dx

 ∑

 , or

 ∑

2.Then

 ∑

Dx & Q

1.Get Dx

 ∑

 , or

 ∑

2.Then

 ∑

Dx & R

1.Get Dx

 ∑

 , or

 ∑

2.Then

 ∑

Dx & Dy 1.Get &

 ∑

 ∑

2.Then

 ()

TABLE IVI C.

Solving Equation for Triple disk failures

Triple disk failures

Error location Solving Equation

P & Q & R ∑

 ∑

 ∑

Dx & P & Q

 ∑

 ∑

 ∑

Dx & P & R

 ∑

 ∑

 ∑

Dx & Q & R

 ∑

 ∑

 ∑

Dx & Dy & P

 ()

 ()

(

)

()

 ∑

Dx & Dy & Q

 ()

 ()

(

)

()

 ∑

Dx & Dy & R

 ()

 ()

(

)

()

 ∑

Dx & Dy & Dz

(

(

)[()

 ()]

(

)[()

 ()]

)

(

 (

)

(

)

)

 [
()

 ()

(

)
]

 [

]

 ()

()

IV. SYSTEM DESIGN

A. The environment

Before system design, one should consider the

requirements of building basic components, construct the

modules, doing integration, algorithm proof and system

analysis. Based on these requirement as well as the

considerations of efficient development and system reliability,

the developing environment should be considered in the first

stage. From the experiences, a concept of developing and

analyzing platform using hardware/software co-design is

applied to this project. This concept will use all the facilities

which are easy/ready to get such FPGA, communication

interfaces and PC.

B. Steps of Development

 Man/machine interface: One should provide useful data

or information on the monitoring on PC. The

information should include test and functional data,

5

commands, error injection data for supporting algorithm

proof.

 Basic components/modules: Developing the

computation units of finite field arithmetic and the

encoder/decoder of RAID 7.3 by using VHDL or C.

 The platform: Converting the simulation program into

test/integration units

 Communication: The design of the transfer protocol for

the RS232/USB.

C. Architecture design of System platform

In the stage of initial algorithm proof, one is normally

doing simulation on PC using C, including the program and

testing files. For the hardware design, such simulation

program should be reused to help the developing of

components or modules in testing and integration. These

software will be a part of the platform for the purposes of the

supports of converting into modules and comparison tools in

testing. In FPGA, the major parts, from component to system

modules, are constructed gradually in the developing platform.

Afterwards, in system view, the major modules and functions

are integrated into the system through the communication link

on PC. The PC will provide better visualization of dynamic

operations using JTAG or in-house link to support the

software development and system verification efficiently. The

architecture of this platform is shown in Fig. 5.

D. Communication link

The communication link of the platform may use JTAG

in FPGA, but this project uses extra link by RS232/USB

interface for mass data transfer. This should have

programing on both NIOS and PC sides to support the

hardware test, functional examination, and system

verification.

V. CONCLUSIONS

Considering a system performance on speed, fault

tolerance, flexibility and scalability, the RAID 7.3 is better

than the current design of RAID. Firstly, this paper proposes a

triple error fault-tolerant RAID with the decoding on rows for

fast encode/decode. In the comparison of decoding speed with

others, the proposed design uses blocks of data from received

data buffer on rows access only so that the decoder can use

burst mode in faster access speed than the other designs [12].

This brings this RAID system having advantage on access

speed and system flexibility.

The proposed RAID 7.3 using the math modules of finite

field to decode the errors/erasures, as refer to Table II, is

assumed to use a hardware computing unit to speed up the

decoding function. This will not just increase the speed of

decoder but also decrees the power consumption of the system.

In this project, the method to efficient developing the decoder

is our important goal. To achieve this goal, several developing

methodologies are applied, such as embedded system design,

software and hardware co-design, and the use of developing

platform.

On this platform, the FPGA present as the core of the

developing system with great usages, such as testbed of

developing components/modules, processor developer like

NIOS, the verifier of the software, and as the center interface

unit of the peripheral and computer systems. Finally, this

project uses FPGA, communication link, and PC as a test and

developing platform to design and develop RAID 7.3 system

efficiently and successfully. We think this system is not just

having a new product, but also bring the higher reliability to

the future storage world.

The FPGA provides students with high design flexible

environment and speed up hardware development. In the

developing of system development platform, the developer

has experienced the skills from the building of operational

core, hardware and software interfaces, the OS driving

interface, transport protocol, system refinement, and the entire

system integration. Also this project provides student valuable

experiences to enjoy the competition and learn mutual

cooperation in teamwork.

Fig. 5 Architecture of System platform

ACKNOWLEDGMENT

This project is support by the NSC101-2221-E-214-058,

NSC102-2221-E-214-028,102-2815-C-214-011-E and

6

ISU101-1-10 from National Science Council and I-Shou

University.

REFERENCES

[1] Minghaw Jing, Chong-Dao Lee, Yaotsu Chang, and Kai Su,

“Tolerating Triple Disk Failures in Triple-Parity RAID”, ISNE,

Kaohsiung, Taiwan, 2013
[2] H.P. Anvin. The mathematics of RAID-6. 2011. Available at

http://kernel.org/pub/linux/kernel/ people/hpa/raid6.pdf

[3] 袁國元袁國元,“利用 RS-code 編解碼積體電路實現高可靠度磁碟陣

列之研究”, 義守大學資訊工程研究所碩士論文, 中華民國八十九年

六月

[4] Adam Leventhal, Sun Microsystems,“Triple-Parity RAID and
Beyond ”, Acmqueue, File Systems and storage, Vol.7 No. 11,

2009,12,1

[5] Chao Jin, Dan Feng, Hong Jiang, Lei Tian, “A Comprehensive Study
on RAID-6 Codes: Horizontal vs. Vertical”, 2011 Sixth IEEE

International Conference on Networking, Architecture, and Storage

[6] Blaum M, Brady J, Bruck J. EVENODD: An efficient scheme for

tolerating double disk failures in RAID architectures. IEEE
Transactions on Computers, 1995, 44(2):192-202.

[7] Corbett P, English B, Goel A. Row-Diagonal Parity for Double Disk

Failure Correction. in: Proceedings of the 3rd USENIX Conference

on File and Storage Technologies (FAST'04), San Francisco, CA,

2004, 1-14.

[8] Plank J S. The RAID-6 Liberation Codes. in: Proceedings of the 6th
USENIX Conference on File and Storage Technologies (FAST'08),

 San Jose, CA, 2008, 97-110.

[9] Xu L, Bohossian J, Bruck J, et al. Low-density MDS codes and
factors of complete graphs. IEEE Transactions on Information

Theory, 1999, 45(6):1817-1826.

[10] Xu L, Bruck J. X-Code: MDS array codes with optimal encoding.
IEEE Transactions on Information Theory, 1999, 45(1):272-276.

[11] Jin C, Jiang H, Feng D, et al. P-Code: A New RAID-6 Code with

Optimal Properties. in: Proceedings of the 23rd ACM International
Conference on Supercomputing (ICS'09), New York, NY, 2009, 360-

369.

[12] 陶志行,“磁碟陣列系統之容錯演算”, 國立成功大學工程研究所博士

論文, 95年 1月 19日

