

 SpeakING
 Brandon Wu

1
, Yi-Chen Chang

2
, and Shih-Chieh Lin

3

Department of Electrical Engineering, National Taiwan University

No.1, Sec. 4, Roosevelt Rd., Da’an Dist., Taipei City 106, Taiwan (R.O.C.)
1
b99901103@ntu.edu.tw

2
b99901023@ntu.edu.tw

3
b99901100@ntu.edu.tw

Abstract—SpeakING is a good helper to those having troubles in

singing─ if you can Speak, you can SING. It is because

SpeakING can transform normal speech into a melody you

create. Moreover, SpeakING can be more entertaining when

combined with specifically designed sound effects. This article

will introduce the theorem and the circuit realization of

SpeakING on FPGA board.

Keywords—vocoder; channel vocoder; voice changer; sing; pitch

I. INTRODUCTION

In the circuit of SpeakING, there are 4 parts, channel

vocoder, recorder, effects units and display. Channel vocoder

can modulate the pitch of the sound; recorder can record and

play back and forward the sounds; in effects units, there are

some kinds of sound effects; display can show the

instantaneous state when using. The first part is the most

major and the most related to efficiency when realized on

FPGA board, and thus we are going to put more effort to

discuss the circuit of it and theorem used in it. Then, we will

introduce the other parts.

The circuit diagram of the typical channel vocoder is

showed in Fig. 1.

Fig. 1 Circuit diagram of the typical channel vocoder using filters[3]

In Fig. 1, a modulator, i.e., a vocal signal, will be sent to

several bandpass filters at first. It passes through different

envelope detectors, each of which consists of a lowpass filter

and a rectifier, in order to use the envelope of it. On the other

hand, a carrier, i.e., a signal of certain frequency, will also

pass through the same bandpass filters as those which a

modulator pass through, and thus can produce different

frequency parts of a carrier. We multiply the parts of a carrier

and the envelopes of a modulator individually and

sequentially. Ultimately, all the results are added as the

output
[1]

. However, this circuit ends up with a large circuit

area because each filter takes up much area to realize, let

alone numerous filters.

Therefore, we consider another method of realizing the

circuit of channel vocoder. Both the modulator and the carrier

on the time domain are transformed by the use of Fourier

transform, consequently being on the frequency domain. The

circuit not only saves resources but also has a better

performance on efficiency.

In addition, SpeakING has basis function as a recorder,

recording, playing back and forward of many states, removing

data, pausing. Effects units of SpeakING include sound effects

such as echo, ghost sound (sounds like an inharmonic

semitone), beat cut, etc. Last but not the least, the display of

SpeakING shows a piano keyboard according with the

physical keyboard you use, a spectrogram of the vocal signal,

and our logo “SpeakING”.

II. THEOREM WE APPLY IN CHANNEL VOCODER

There are several differences between the method of using

filters and that of using Fourier transform. The former can let

the signal pass through filters without interruption, while the

latter needs to cut the signal into several pieces for the sake of

FFT (Fast Fourier Transform).

 Fig. 2 System architecture of channel vocoder using FFT

2

In Fig. 2, our architecture takes 64 samples for a segment to

compute FFT (N = 64). In order to eliminate the boundary

discontinuities, we overlap the output voice for 50% and also

use hanning windows.

At each segment on the frequency domain, there are 64

modulators and carriers individually. We multiply both of

them one-to-one separately and this is the same situation in

Fig. 1. However, we couldn’t multiply the corresponding

complex numbers in the frequency domain because the

modulators had been envelope detected. Only using the

absolute values of modulators (that is X(k), k = 0, 1, 2, … , 63)

can be multiplied with the carriers. That is to say, we only

focus on the magnitude rather than the phase information.

That is to say, we modify the weights of the carrier signals

(pitch signal) according to the modulator signals (vocal signal).

After computing, the signals are translated back to the time

domain by IFFT (Inverse Fast Fourier Transform) and become

the output signals which are composed with the pitch we want.

III. CIRCUIT REALIZATION OF SPEAKING

A. The core circuit - channel vocoder

The circuit architecture is essentially based on Fig.2 (screen

display output is not shown). Each part will be introduced.

Channel vocoder schematic is provided in the appendix for

reference.

Input devices for the system are separated into voice input

and pitch input, namely, a microphone and the pitch control

keyboard. The sampling rate for microphone input is about

8kHz, and every 64 continuous sample points are stored in the

buffer register, to be delivered to the FFT operation. For the

keyboard input, we designed a simple circuit using 25 key-

type switch and batteries for additional power supply.

Whenever a certain key combination is pressed, a module

(called "carrier generator") will calculate the resulting carrier

waveform. This carrier signal will be sent in parallel with the

voice signal to FFT modules, in a buffered way too. Electrical

elements used are shown in the following diagram, Fig. 3:

Fig.3 Switching element

When the element is pressed, C and NO are connected, C

and NC are disconnected. The opposite is the case when the

element is released. So we can set NO at a high potential (with

two 1.5V batteries, the actual potential is between 3.1V to

3.2V) and NC ground, and have C connected to the HSMC's

PIN, then any combination of key press can be related to a set

of signal.

The FFT computation (also, IFFT operation) in the circuit

is implemented with the built-in Mega Core Function in
Quartus. The computation time is less than 0.1 ms (working at

3.125MHz), so the majority of the overall delay stems from

audio buffering, which is about tens of milliseconds. That is

the essence of our circuit; one can achieve real-time speech-

sing conversion without any post-production.

For the remaining operations including absolute value,

window function (hanning window) and the overlap on the

final stage, only simple algebraic operations are used.

In addition to audio output, we also provide graphical

output via VGA port on FPGA board. By connecting it to the

screen, users are able to see visualized key-tone effects and

audio equalizer.

B. Recording, playback , clear , fast-forward, rewind, sound

effects

1) Recording: Analogue voice signal is sampled by

WM8731 at about 8kHz sampling rate. Each sample is a 16-

bit digital signal and is stored in the SRAM in order.

2) Play: Data in the SRAM are read as samples in the

order in which the samples are stored. The samples are then

converted into an analogue signal by WM8731, and the signal

is the output of the speaker.

3) Clear: All data in the SRAM are set to 0.

4) Fast-Forward, rewind: Data in SRAM are read in a

skipping way, some of the data will be jumped either forward

or backward, depends on the multiple. It is essentially a zero-

order interpolation method. Again, the resulting samples will

be converted to voltage signal via WM8731, then played

through the speaker.

5) Sound effects:

 Beatcut: Throughout all samples, we set some of them

to zeros periodically. The effect is like "cutting" the

voice to pieces.

 MachineCut: It is equivalent to Beatcut, but at a much

higher rate of inserting zero samples. This "on and

off"(equivalent to multiplying a square wave) rate has

reached the frequency range of human voice, so the

effect is particularly evident for human voice; it will

make voice sound more hoarse, or like a robot.

 Echo: Samples delivered to two channels are slightly

different in time, creating a delay, echo effect.

 GhostSound/NormalSound: Ghost sound is created by

raising the pitch of one of the channels slightly, and

playing two channels simultaneously. It will sound

dissonant and unnatural. To achieve this, we modified

the address WM8731 should read linearly and

periodically. Changing the "phase" linearly with time

means changing the frequency (but also playback

speed), and in order to make sounds from two channel

consistent in time, periodic manipulation is needed.

when released

when pressed

3

IV. PHYSICAL BODY AND PERFORMANCE ANALYSIS

Below, Fig.4 shows the picture of the physical body of

SpeakING without the microphone appearing.

Fig. 4 Physical body of SpeakING

On the performance of efficiency, channel vocoder has the

most influence. To optimize the circuit, we used MATLAB to

make some simulations of channel vocoder. Firstly, not using

hanning windows spares little circuit area and results in

obviously low tone quality. Secondly, not overlapping leads to

the incontinuous output but saves half time circuit area with

the 50% overlap; overlapping 75% makes the output smoother,

improves the tone quality, but brings about twice circuit area
with the 50% overlap. Therefore, we choose the 50% overlap

in our channel vocoder.

In addition, if we adopt the circuit architecture of the

typical channel vocoder, there will be more than one hundred

filters in our channel vocoder, which leads to unacceptably-

huge circuit area. On the other hand, the filters provided by

Mega Core Function are FIR filters instead of IIR filters

which we used in MATLAB simulations, which causes the

different total numbers of used elements. And different filters

having their own delays will make the output addition rather

difficult.

V. CONCLUSIONS

With SpeakING, people can easily not only sing but also

create a lovely song. Moreover, our method of realizing

SpeakING spares much circuit area, which also means spares

much money to generate.

REFERENCES

[1] B. Gold, C. M. Rader , “The Channel Vocoder,” IEEE Transactions on

Audio Akd Electroacoustics, vol. –4C–15, ko. 4, Dec. 1967.

[2] D. Rocchesso, DAFX: Digital Audio Effects, Wiley Online Library,
2002.

[3] http://sethares.engr.wisc.edu/vocoders/channelvocoder.html

4

APPENDIX

HSMC_RX_D_N[16]

HSMC_CLKIN_P2

HSMC_RX_D_P[16]

HSMC_TX_D_N[16]

HSMC_RX_D_N[15]

HSMC_TX_D_P[16]

HSMC_RX_D_P[15]

HSMC_TX_D_N[15]

HSMC_RX_D_N[14]

HSMC_TX_D_P[15]

HSMC_RX_D_P[14]

HSMC_TX_D_N[14]

HSMC_RX_D_N[13]

HSMC_TX_D_P[14]

HSMC_RX_D_P[13]

HSMC_RX_D_N[12]

HSMC_RX_D_P[12]

HSMC_TX_D_N[13]

HSMC_RX_D_N[11]

HSMC_TX_D_P[13]

HSMC_RX_D_P[11]

HSMC_TX_D_N[12]

HSMC_RX_D_N[10]

HSMC_TX_D_P[12]

HSMC_TX_D_P[9]

1
st
 piano key

2
nd

 piano key

3
rd

 piano key

4
th

 piano key

5
th

 piano key

6
th

 piano key

7
th

 piano key

8
th

 piano key

9
th

 piano key

10
th

 piano key

11
th

 piano key

12
th

 piano key

13
th

 piano key

14
th

 piano key

15
th

 piano key

16
th

 piano key

17
th

 piano key

18
th

 piano key

19
th

 piano key

20
th

 piano key

21
st
 piano key

22
nd

 piano key

23
rd

 piano key

24
th

 piano key

25
th

 piano key

1
0

1
0

1
0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1
0

1
0

1
0

5

6

