

 FairyTales – Fairly Detailed
 Shao-Hua Sun

1
, Yao-Hung Tsai

2
, and Chi-Wen Cheng

3

 Department of Electrical Engineering, National Taiwan University

 No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C)
1
b99901011@ntu.edu.tw

2
b99901152@ntu.edu.tw

3
b99901041@ntu.eud.tw

Abstract— This document gives a detailed explanation about the

design of our product and the implementation of it. The name of

our product is FairyTales, which is a visual assistant with respect

to some extending function such as taking photos and real-time

handwriting. The functionalities of FairyTales are realized

through DE2-115 board which is a powerful equipment designed

for to create, implement, and test digital designs using

programmable logic.

Keywords— FairyTales; auxiliary eyeglasses; augmented reality

(AR); vision system; DE2-115; Innovate Asia; Altera

I. INTRODUCTION

Nowadays, visualization is the most simple but direct way

we contact with the outside world. That is, perceptions,

feelings etc. can easily be transmitted through human eyes.

However, the sight for human can’t be assured to be precise,

and this defect often misleads us to unnecessary mistakes and

errors. For instance, lacking enough brightness at night will be

a serious problem for pedestrians; furthermore, in some

situations, we hope to increase the contrast in colour to have a

clear sight. Therefore, we wish to design a product that can

resolve the upper problems for a better vision for human.

Additionally, the function of immediate snap shot and

browsing photos prevent us from regretting the fleeting scene

in our life; the function of real-time handwriting make us able

to record any information in the world. We name our product

“FairyTales”, which is “Face And I Refreshed You, Take A

Live Efficient Shot”, and we believe it is a cutting edge

product.

The function of our product is realized on DE2-115, and we

give a detailed introduction to our design. In the future, our

product will build in an IC chip inside eyeglasses along with a

small LCD display. There will be a micro camera beside the

eyeglasses to film the scene, and it displays on the LCD

display with icon interface.

The method we control our product is via fingertip and

gestures rather than voice. With your fingertip pointing to the

icon maintaining a few second, it will be recognized as a

“click” action. Along with various gestures, we can operate

the product in a more clever way. The trivial part will be

discussed in section IV.

In this paper, there will be five sections, and they are

introduction, related products, functionality, implementation,

and conclusion, respectively.

II. RELATED PRODUCTS

Google glass and digital camera are the two famous

products that in some aspect are similar to FairyTales can be

found in the market. Both of them have their strengths but

their weaknesses are required improvement. In the following

part, we compare the two products with ours.

A. Google Glass

Google glass is designed for instant sharing images, video,

and audio via Internet. The powerful work Google Glass

manifests impresses human beings and gives us a newly

feelings of information exchanging toward the world. The

method Google Glass control the wearable computer is via

voice. However, audio signal processing is not yet mature in

the present technology, and this often cause

misunderstandings between our intuitive and realization of the

computer. Furthermore, lacking support of numerous

languages is another serious problem, and this limits it to be a

worldwide product. The difference in our product is that we

communicate with computer via fingertip and gestures

detection, and this asserts a more simple but strict approach to

utilize the functions.

B. Digital Camera

Invention of digital camera makes us easy to capture

memories or capture data. We can take snapshots of our

friends or document our family at everywhere, and we can use

it to help us remember things such as taking photos of the

billing information. However, even though we can do lots of

things with a digital camera, there are still some drawbacks

we can’t neglect. We may often encounter this situation: the

moment we would like to capture is transient, so the best time

for the photography is too short to grasp. We are not able to

always get ready when the opportunity is arriving, and taking

an immediate photography is essential. Additionally, having

the handwriting in the photos during taking pictures is much

more convenient than editing them afterwards. FairyTales not

only enables us to photo promptly, but also allows us to record

the information through real-time handwriting in the photos.

Comparing with the above two products, FairyTales

manifests the conveniences which they can’t offer. FairyTales

2

 (a) (b) (c)

Fig. 1 Interfaces in different modes. (a) Initial (b) Interface (c) Display modes

aims at providing a human-friendly and creative usage for

the users to better the life experience.

III. FUNCTIONALITIES

FairyTales realizes several fantastic tasks. At this part,

we’re going to introduce each of these functionalities and

demonstrate how it works. At section A, we show how to
launch the product. Section B shows how to adjust saturation

as well as brightness. Section C presents how to do

handwriting when you want to record something about the

picture. At section D, we explain how to take a snap with

FairyTales. The final section E shows how to browser the

saved pictures.

There’re three different modes in FairyTales, and they

attribute to different functionalities and interface. In Fig.1 lists

interfaces in different modes.

C. Launch

The upper right corner “start” icon is the only user interface

when the product starts. Click the “start” icon, and other

operating icons would pop out on the screen. If clicking upper

right corner “start” icon again, the user interface would be

back to the initial one, so that users can decide whether to

show the icons as their wish. Besides, when clicking the

screen, there will be bright spot at the pointing location. This

function shows users if they really click the icons or other

position.

 (a) (b)

Fig. 2 (a) Launch (b) Close icons

D. Brightness/Saturation Adjustment

Users can adjust screen’s saturation and brightness

according to different conditions. These icons are on the lower

right corner of the screen. The right ones are for brightness

and the left ones are for saturation. Users can know the

adjustment value by the bars showing above, both have 16

scales, from 0 to 15.

 (a) (b) (c) (d)

Fig. 3 (a) Brightness minus (b) Brightness plus (c) Saturation minus (d)

Saturation plus icons

E. Handwriting

The lower part of the screen would pop out a handwriting

box when click the “handwriting” icon on the left side. There

are three kinds of colour for handwriting, including red, blue

and yellow, and the red one is the default one. Users can

choose the colour and write with hands in the box. If they

aren’t satisfied with their result, they can delete it by clicking

the “delete” icon on the left side.

 (a) (b) (c) (d)

 (e)

Fig. 4 (a) Handwrite (b) Red pen (c) Yellow pen (d) Blue pen (e) Shut off

icons

F. Snap

If users touch the “snap” icon on the lower left corner, the

icon would shimmer and take a snap after 2 seconds. In

addition, users can also take a snap with gesture. Note that the

gesture should occupy whole screen so that it can be detected.

And the handwriting can be record via snapping.

3

Fig. 5 Snap icons

Fig. 6 Snap gesture

G. Display Mode

Users can change to display mode by clicking the “display”

icon on the upper left corner. In the display mode, we can turn

to next page or previous page by waving hand left to right or

right to left. If the picture is the last one, and users wave arms

left to turn to next page, the picture would be back to the first

one like a circular ring. If users blank the camera lens, system

would turn back to interface mode.

Fig. 7 Display icons

Fig. 8 Schematic drawing of hand-waving

IV. IMPLEMENTATIONS

In this part, we precisely introduce how we design

FairyTales and how we implement its functionalities. The rest

of this part is organized as follow. We briefly mention

FairyTales’s operation on different modes in Section A.

Section B presents our framework of sensing icons. Section C

describes the details about brightness and saturation

adjustment. Section D and Section E explain how we

implement snap with sensing icon and intuitive gesture,

respectively. Section F presents how we execute FairyTales’s

functionalities in display mode. Implementation of real-time

hand-write will presents in Section G, followed by the

conclusions of this paper.

A. State Control

To explain our system’s architecture; therefore, at the

beginning, we mention FairyTales’s different modes and

functionalities of these modes. To properly prevent different

modes from confusion, we apply two signals to take control.

These two control signals named change_mode and

write_mode, respectively. In the following, we simply

introduce these two control signals and the modes

administered by them.

1) Change_mode: This signal manages three modes: initial

mode, interface mode, and display mode. Fig. 1 illustrates

three modes. The control signal change_mode manages these

three modes by sensing icons and gestures. Besides,

change_mode not only enable or disable operation of sensing

icons and gestures, but also determines which icons to be

show in different modes. With 2-bit long change_mode, we

separate three mode as followed:

change_mode[1] == 1’b0 -> initial mode

change_mode == 2’b10 -> interface mode

change_mode == 2’b11 -> display mode

Switch between these three modes is so intuitive. Click the

“start” icon at the upper right corner to switch between initial

mode and interface mode. Click the “display” icon at the

upper left corner to switch to interface mode. Blank the

camera lens with your finger and we can switch to display

mode.

2) Write_mode: As it’s name, this signal determine whether

user can utilize handwriting. However, write_mode can only

facilities under interface mode (change_mode == 2’b01). Fig.

9 and Fig. 10 illustrat the two modes. With 1-bit long

write_mode we separate two mode as followed:

write_mode == 1’b0 -> non-handwrite mode

write_mode == 1’b1 -> handwrite mode

Switch between these two modes is so intuitive. Click the

“colourful finger” icon at the lower left corner would switch

to non-handwrite mode. Click the “forbidden finger” icon at

the lower left corner would switch to handwrite mode.

4

Fig. 9 Non-handwrite mode

Fig. 10 Handwrite mode

B. Sensing Icons

To fulfil our demand of touching buttons above the glass,

camera need to sense the vision and determine whether an

certain point is touched or not. However, we adopt a genius

approach to avoid from consuming enormous memory space

to save every pixel of a series of frame (at least

800*600*3*10*n bits, which n is the number of a series of

frame). In the following, we briefly explain our

implementation.

First, we divide every frame into forty-eight 100 pixels*100

pixels patches to fit our icon size. Schematic drawing is in Fig.

11.

Fig. 11 Schematic drawing of divided patches

Every patch can at most be assigned a sensing icon. So the

question is how to determine whether a certain patch is

touched or not. In practical, we do not need to detect every

point of patches. It’s making constrain too strength, and also

waste too much memory space. Therefore, we only take the

center of patches as samples. Our schematic drawing of

sample points is in Fig. 12.

Fig. 12 Schematic drawing of sampling points

Any patch and any other else patch are independent. Once a

patch’s center detects the attendance of finger, this event

would be regard as this sensing icon (if there is one) being

touched.
As mentioned above, the issue of sampling is bring to close.

However, if we consider only a frame to determine whether a

certain patch is touched or not, the environment noise would

lead to a terrible problem.

The approach to solve this problem is to consider sequences

of frame. We chose to record forty-eight bits (1 means

touched, 0 means non-touched) of continuous fifteen frames.

Finally we AND these fifteen register of forty-eight bits

together to obtain the final answer of whether a certain patch

is touched or not during this time interval. The schematic

drawing of operation is in Fig. 13.

Fig. 13 Schematic drawing of frame-sequence operation

As a consequence, the register “final” would be the

indicator to decide if sensing icons are touched. Different

control signals would be triggered by different touched

sensing icons, and different operations would be triggered be

5

different control signals. The control signals are listed as

followed:

b_lum_add = ~change_mode[1] || KEY_signal || ~final[39];
b_lum_sub = ~change_mode[1] || KEY_signal || ~ final [47];
b_sat_add = ~change_mode[1] || KEY_signal || ~final [38];
b_sat_sub = ~change_mode[1] || KEY_signal || ~final [46];

b_screen_shot = ~change_mode[1] || KEY_signal || ~final

[40];

b_control = change_mode[0] || KEY_signal || ~final [7];

b_change_mode = KEY_signal || ~final [0];

b_write = change_mode[1] && (change_mode[0] ||

KEY_signal || ~final [32]);

b_write_back = change_mode[1] && (change_mode[0] ||

KEY_signal || ~final [24]);

b_write_red = change_mode[1] && (~write_mode ||

change_mode[0] || KEY_signal || ~o_isFinger[25]);

 (a) (b)

Fig. 14 Schematic drawing of SDRAM memory space

b_write_green = change_mode[1] && (~write_mode ||

change_mode[0] || KEY_signal || ~o_isFinger[33]);

b_write_blue = change_mode[1] && (~write_mode ||

change_mode[0] || KEY_signal || ~o_isFinger[41]);

The KEY_signal is made according to the signal that

generated by DE2-115 board when the buttons on the board

are pressed on. Besides, change_mode plays a role of

supervisor that determine which signal is valid to be generated

depend on different modes.

By means of above procedures, we can easily use finger to

press on sensing icons above the glasses.

C. Brightness/Saturation Adjustment

Because of the difference of implementations, we separate

this section into two parts to explain how we design the

system of luminance adjustment and saturation adjustment,

respectively.

1) Brightness:

According to concepts and principals of image processing,

we know that the so-called “brightness” of a pixel is definite

as followed:

Y = 0.299*R + 0.587*G + 0.114*B (1)

By this formula, we can not only convert RGB values of a

pixel to brightness but also know that we can increase the

brightness of a pixel by increasing the RGB values.

Therefore, our implementation is based on this concept. We

declare a register named “lum”, which is 4-bit ling. And then

the luminance adjustment is as followed:

output_R = input_R + lum * lum_scale

output_G = input_G + lum * lum_scale

output_B = input_B + lum * lum_scale

The parameter “lum_scale” is determined by try-and-error,

and it’s most proper value is about 50.

Moreover, the RGB values above are all 10-bit long

register, so these values range from 0 to 1023. To prevent

RGB values from overflowing, we set the value that more

then 1023 to be 1023.

2) Saturation:

According to concepts and principals of image processing,

we know that the so-called “saturation” of a pixel is definite

as followed:

V = 0.5*R - 0.419*G - 0.081*B + 128 (2)

By this formula, we can not only convert RGB values of a

pixel to brightness but also know that we can increase the

saturation of a pixel by increasing the R value and decreasing

the G value and B value.

However, in order to simplify the computation, we

approximate the formula above to:

V = R - G (3)

Therefore, our implementation is based on this concept. We

declare a register named “sat”, which is 4-bit ling. And then

the saturation adjustment is as followed:
output_R = input_R + lum * lum_scale

output_G = input_G + lum * lum_scale - sat * sat_scale

6

output_B = input_B + lum * lum_scale + sat * sat_scale
The parameter “sat_scale” is determined by try-and-error,

and it’s most proper value is about 20.

Moreover, the RGB values above are all 10-bit long

register, so these values range from 0 to 1023. To prevent

RGB values from overflowing, we set the value that more

then 1023 to be 1023 and set the value that smaller then 0 to

be 0.

D. Snap with Sensing Icon

Because of the difference of implementations, we separate

this section into two parts to explain how we design the

system of luminance adjustment and saturation adjustment,

respectively.

We knew that SDRAM would buffer the newest frame

every time. Thus we decide to save picture by reloading new

address, which is next to the processed one. Remember that

both read and write addresses are the same when snapping

(interface mode in other word), so both needs to be reloaded

simultaneously. Note the reloading needs to be executed

between one frame and another, preventing picture from

aliasing. More details are shown in Fig. 14 (a).

Now we can save pictures. Besides, if we consider how to

read the saved pictures, the idea is similar to the previous one.

For example, if we have snapped three pictures already, and

now we want to see these pictures, the read address will jump

to a certain address (first picture at first time by default). Note

that the write address doesn’t change along with the read

address. More details are shown in Fig. 14 (b).

E. Snap with Gesture

To prevent users finger from being captured on the screen

and let the product being more user-friend, we add a 2-second

delay from clicking “snap” icon to FairtTales really taking a

snap. The controlling finite state machine is shown in Fig. 15.

Fig. 15 Schematic drawing of state of gesture detecting

In order to knowing if we press the icon or not, we use the

signal snap_counter[23] in state SNAP COUNT to control

the icon shimmering. Therefore, if we see the icon

shimmering, we know that FairyTales is about to snap after 2

seconds.

Besides snapping by clicking the sensing icon, we can also

snap by a specific gesture. The idea is from Pranav Mistry, a

MIT orator in TED. Now we implement one of his ideas in

our product.

However, we don’t want to wear fingerstalls. The reason is

we think it’s not user-friendly enough if there’re too many

fingerstalls. Thus we choose to recognize complexion instead

of detecting fingerstalls.

The algorithm is simple. First we divide the screen into a 3

by 3 grid as in Fig. 16.

Fig. 16 Schematic drawing of divided screen

We find that if we pose the gesture, two palms are surely

diagonal, that is 2&6 or 0&8. Note that patch 4 must not be

complexion and the fingers (both thumb and index finger) are

at patch 1, 3, 5, 7. However, neither the fingers are big enough

to occupy the patch, nor the fingers are at certain location. As

a consequence, the condition is looser than the others. In

conclusion, when sensing complexion at the condition of

(0&8|2&6)&(!4)&(1&3&5&7), snap icon will shimmer and

FairyTales will be about to snap after 2 seconds.

F. Display mode with Gesture

As mentioned above, SDRAM writing address can be

changed at any time, but the reload signal should be updated

during the interval between a finished frame and next frame.

Though it’s very easy to do this work by just pressing on

the button, we designed intuitive FairyTales display mode that

change viewed picture just with your hand throwing.

In order to detect user’s hand, we adopt simple version of

complexion detection algorithm to turn every frame into a

binary frame (1 means skin, 0 means non-skin). We also

designed two finite-state machines (FSM) to record the state

of hand throwing. FSM description is drawn in Fig. 17.

We choose the event “TurnRight” as example to explain.

Initial state called “IDLE”. FSM at “IDLE” waits to be

triggered. By detecting user’s hand attending at left side of

screen, FSM then move to the next state “R1”. FSM at “R1” is

expecting user’s hand appearing at the middle of screen and

then move to the next state “R2”. Likely, when user’s hand

finally arrives at right side of screen, FSM then move to the

next state “R3”. At the next clock falling edge, FSM move to

next state “TurnRight”, and change SDRAM writing address

at the same time. As the writing address of SDRAM being

changed, the viewed picture would be change. Finally, FSM

move to “IDLE” state and begin to wait to next “TurnRight”

event.

7

As mentioned above, “TurnLeft” event operates the same

mechanism as “TurnRight” event.

With “TurnRight” and “TurnLeft”, user can intuitively

changed picture which displayed on the screen as he or she

want.

Moreover, we designed system to count the number of

black pixels in each frame on display mode. Once the number

of black pixels is more then a threshold, FairyTales would

change display mode into interface mode.

G. Handwrite

We design the real-time handwrite algorithm in the module

RAW2RGB. The reason we design it in RAW2RGB not in

other module is because the handwriting must be memorized

in SDRAM not only displayed on the screen, so the prior

module is needed rather than the posterior module, and the

process of our module can be illustrated in Fig. 18.

Fig. 18 Process of handwrite module

Fig. 17 FSM description

1) Decide Size: First, we select the size of our output

handwriting patches. If we choose the size to be 10 pixels,

than the handwriting patches will be bigger; otherwise, if we

choose the size to be 5 pixels, than the patches will be smaller.

Usually, the smaller patches, the smoother handwriting would

be. In our module, we choose the size to be 5 pixels.

2) Detect Fingertip: In the 5*5 pixels, we define that if the

middle 3*3 pixels are detected to be green, than we say that

the patch is chosen; otherwise, we say that the patch isn’t

chosen. In Fig. 19, if the 3*3 pixels are detected in the 5*5

pixels, than the patch is considered to be an effective patch.

3) Determine Active Period: Different from the setting of

the sensing icon, the active period of our handwriting function

is 1 frame, not 15 frames. That is, if the patch viewed as the

effective patch within 1 frame, it would be coloured.

Fig. 19 5*5 pixels patch with medium 3*3 pixels detected

8

4) Coincide Handwriting: There are two registers in our

module, tmp_handwrite and final_handwrite, respectively.

These two registers represent the above patches. At the

beginning, all the patches in tmp_handwrite are all given

value 1. If one patch not considered as green, than that patch

in tmp_handwrite would be given background colour. After

one frame is finished, we coincide tmp_handwrite and

final_handwrite. Fig. 20 explains our algorithm.

Fig. 20 Coincde tmp_handwrite and final_handwrite

5) Erosion & Dilation: After final_handwrite finishes its

change, we refine the value with erosion and dilation. The

adjustment would be: if one patch has five surrounding

coloured patches, than whether or not this patch is coloured,

this patch would be regarded as coloured patch. On the other

hand, if one patch has at most two surrounding coloured patch,

than it would be regarded as non-coloured patch. After we

finish erosion and dilation, the values of pixels in

final_handwrite are given to processs_handwrite. Fig. 21.

explains the process.

Fig. 21 Erosion and dilation after final_handwrite

6) Output: Due to the fact that camera processes the image

in a sequential manner, we can’t compute both

final_handwrite and processs_handwrite in the demand of

real-time. That is, we have to compute them in different time

sequence. We compute final_handwrite in the bottom of A-

frame, and we compute processs_handwrite in the upper half

of (A+1)-frame. After the computation of processs_handwrite

is finished, the result is given to o_handwrite, which is the

output on the screen. In this mean, we can assert to have a

real-time handwriting rather than a delayed one. Fig. 22.

explains the process.

Fig. 22 Compute final_handwrite and process_handwrite at different time

V. CONCLUSIONS

The product we design aims at altering humans’ vision and

realizing real-time hand-wring and taking photos. We

compare our product to Google glass and digital camera and

also give a detailed explanation to our product. In our design,

we utilize numerous techniques especially in hardware to

apply on various functionalities. Wholeheartedly, we wish our

product may ameliorate humans’ life and we would never stop

improving it.

