

 Design of A Six-stage Pipelined MIPS

 Processor Based on FPGA
 Qiao-Zhi Sun, De-Chun Kong, Cheng-Long Zhao, and Hui-Bin Shi

Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

 504914613@qq.com

 hshi@nuaa.edu.cn

Abstract—We design a 32-bit embedded six-stage pipelined

processor which is compatible with MIPS instruction set. The six

stages make the task of each stage balanced. We use forwarding

and stalling to solve data hazards. Control hazards are solved by

predicting which instruction should be fetched and when the

pipeline will be flushed if the prediction is later determined to be

wrong. The processor is implemented in DE2 development board,

and its operating clock frequency can be up to 81.7MHz. In the

end we present the comprehensive results of the design. Besides,

we show the software simulation and hardware verification to

prove the correctness of the design.

Keywords—MIPS; embedded; pipelined processor; hazards;

FPGA;

I. INTRODUCTION

It proves that about 20% instructions in computer take the

80% of all the task by John Cocke, who first introduced the

conception of RISC in 1947([1]), working in IBM research

center in York of New York city. The first computer made by

this theory is The IBM PC/XT in 1980. Later, IBM RISC

System / 6000 also made use of this. The word RISC itself

belongs to David Patterson a teacher at the university of

California in Berkeley. The concept of RISC is also used by

Sun's SPARC microprocessor, which promotes the

technology of MIPS.

RISC technology has been an active field of computer

development, especially in the embedded application. Today,

almost all of the embedded microprocessor take RISC

architecture in the market. These embedded microprocessors

have been widely applied in real-time industrial control

systems, multimedia, wireless network, and plays an

important role as a core component of these systems. In this

paper we design a 32-bit embedded six-stage pipelined

processor with the high performance which is compatible with

MIPS instruction set, based on analyzing the system structure

of MIPS, combined with the flexibility characteristics of

FPGA.

II. DESIGN AND IMPLEMENTATION

A. The design of the six- stage pipeline

The five-stage pipelined processor is classical pipelined

processor, namely the data path is divided into five stages. In

this paper, we design a six-stage pipeline processor. Specially,

we call the six stages Fetch, Decode, Choose, Execute,

Memory and Writeback.

In the Fetch stage, the processor reads the instruction from

instruction memory. In the Decode stage, the processor reads

the source operands from the register file and decodes the

instruction to produce the control signals. In order to solve

hazards, in the Choose stage, the processor selects the

operands, which will be the two input ports of ALU in

Execute stage. In the Execute stage, the processor performs a

computation with ALU. In the Memory stage, the processor

reads or writes the data memory. Finally, In the Writeback

stage, the processor writes the result to the register file, when

applicable. Figure 1 shows the six-stage pipeline diagram.

B. The design of control signal

As the key part of processor, the control unit computes the

control signals based on the opcode and funct fields of the

instruction, Instr31:26 and Instr5:0 .

Most of the control information comes from the opcode,

but R-type instruction also use the funct field to determine the

ALU operation. Thus, we will simplify our design by

factoring the control unit into two blocks of combinational

logic, as shown in Figure 2. The main decoder computes most

of the outputs from the opcode. It also determines a 2-bit

ALUOP signal. The ALU decoder uses this ALUOP signal in

conjunction with the funct field to compute ALUControl. The

meaning of the ALUOp signal is given in table I.

Table Ⅱ is a truth table for the ALU decoder. Because

ALUOp is never 11, the truth table can use do not care X1

and1X instead of 01 and 10 to simply the logic. When

ALUOp is 00 or 01, the ALU should add or subtract,

respectively. When ALUOp is 10, the decoder examines the

funct field to determine the ALUControl. Note that, for the R-

type instructions we implement, the first two bits of the funct

field are always 10, so we may ignore them to simply the

decoder.

TABLE II

 ALUOP ENCODING

ALUOp Meaning

00 add

01 subtract

10 Look at funct field

11 n/a

2

CLK

0

1

Pc

F
 Pc’

CLK

A

RD

A1

A2

A3

WD3

RD1

RD2

CLK

WE3

0

1

25:21

20:16

0

1

+

4

signlmmC

WriteRegE4:0

SrcAE

SrcBE

20:16

15:11

15:0

instrD

PCBranchC

0

1

CLK

WE

A

RD

WD

ReadData

ResultW

WriteDataE

ALUOutM

CLK

CLK

RtC

RdC

CLK

WriteData

M

ALUOutW

WriteRegM4:

0

WriteRegW4:

0

控 控

控 控

31控 26

5控 0

 Op

Funct

RegWriteD

MemtoRegD

MemWriteD

BranchD
ALUControlD

ALUSrcD

RegDstD

RegWriteE RegWriteWRegWriteM

RegDstC

ALUSrcC
ALUControlE2:0

MemWriteE MemWriteM

MemtoRegE
MemtoReg

W
MemtoRegM

PCSrcC

PCPlus4F
PCPlus4

D

控 控 控 控

25:21

RtD
RdD

RSD RsC

RegWriteW

00

10

01

00

1

0

01

F
o

rw
a

rd
B

C

F
o

rw
a

rd
A

C

S
ta

llF

F
lu

s
h

C

M
e

m
to

R
e

g

E

C
L

R
 E

N

E
N

E
N

C
L

R

signlmmD

S
ta

llD

B
ra

n
c
h

C

R
e

g
W

rite
E

R
e

g
W

rite
M

M
e

m
to

R
e

g
M

<<2

+

U
L

A

=

11

1

1

C
L

R

0

1

CLK

F
lu

s
h

E

RegWriteC

MemtoRegC

MemWriteC

ALUControlC2:0

S
ta

llC

F
lu

s
h

D

WriteRegC4:

0

Hazards unit

Fig. 1 The six stage pipeline diagram

MemtoReg

MemtoWrite

Branch

ALUSrc

RegDst

RegWrite

Funct5:0

ALUOp1;0

ALUControl2:0

Opcode5:0

Control unit

Main decoder

ALU

Decoder

Fig. 2 Control unit internal structure

The control signals for each instruction were described as

we built the datapath. Table III is the truth table for the main

decoder that summarizes the control signals as a function of

the opcode. All R-type instructions use the same main decoder

values; they differ only in the ALU decoder output. For

instructions that do not write to the register file(e.g., sw and

beq), the RegDst and MemtoReg control signals are don't not

cares(X); the address and data to the register write port do not

matter because RegWrite is not asserted. The logic for the

decoder can be designed using combinational logic design.

TABLE II

 ALU DECODER TRUTH TABLE

ALUOp funct ALUControl

00 X 010(add)

X1 X 110(subtract)

1X 100000(add) 010(add)

1X 100010(sub) 110(subtract)

1X 100100(and) 000(and)

1X 100101(or) 001(or)

1X 101010(slt) 111(set less than)

TABLE III
MAIN DECODER TRUTH TABLE

instruction opcode R

W
RD ALUsrc Branc

h
M

W
M

R
ALUOp

R-type 000000 1 1 0 0 0 0 10

Lw 100011 1 0 1 0 0 1 00

Sw 101011 0 X 1 0 1 X 00

Beq 000100 0 X 0 1 0 X 01

C. The solutions to the hazards

3

A central challenge in pipelined systems is handling

hazards. In a pipelined system multiple instructions are

handled concurrently. When one instruction is dependent on

the results of another that not yet completed, a hazards occurs.

Hazards are classified as data hazards or control hazards

 data hazards: A data hazard occurs when an instruction

tries to read a register that has not yet been written

back by a previous instruction.

 control hazards: A control hazards occurs when the

decision of what instruction to fetch next has not been

made by the time the fetch takes place ([2]).

1) Data hazards:

The register file can be read and written in the same cycle.

Let us assume that the write takes place during the first half of

the cycle and the read takes place during the second half of the

cycle, so that a register can be written and read in the same

cycle without introducing a hazard.

Figure 3 illustrates hazards that occur when one instruction

writes a register ($s0) and subsequent instruction read the

register. This is called a read after write (RAW) hazard. The

add instruction writes a results into $s0 in the first half of

cycle 6. However ,the and instruction reads $s0 on cycle 3,

obtaining the wrong value.

The or instruction reads $s0 on the cycle 4, again obtaining

the wrong value. The sub instruction reads $s0 on the cycle

5, still obtaining the wrong value. The next instruction will

reads the $s0 in the second half of the cycle 6, since data has

been written in the first half of the cycle 6, subsequent

instruction will read the correct value.

or

F E M WD C

2 3 4 5 6 7 8 91

F E M WD C

F E M WD C

F E M WD C

time

$s3add $s2$s0

and $t0 $s0 $s1

$t1 $s4 $s0

sub $t2 $s0 $s5
Fig. 3 Abstract pipelined diagram illustrating hazards

The diagram shows that hazards may occur in this pipeline

when an instruction writes a register and either of the two

subsequent instruction read that register. Without specially

treatment , the pipeline will compute the wrong result.

On a closer inspection, however, we observe that the sum

from the add instruction is computed by the ALU in cycle 4

and is not strictly needed by the and instruction until the ALU

uses it in cycle 5. In principle, we should be able to forward

the result from one instruction to the next to solve the RAW

hazard without slowing down the pipeline. Figure 4 shows

that how to solve the data hazards with forwarding. In cycle 4,

$s0 is forwarded from the Execute stage of the add instruction

to the Choose stage of the and instruction. In cycle 5, $s0 is

forwarded from the Memory stage of the add instruction to the

Choose stage of the or instruction. In cycle 6, $s0 is forwarded

from the Writeback stage of the add instruction to the Choose

stage of the sub instruction.

 There are two ways that the data obtained in the Memory

stage. One way the value is the result that is computed by the

ALU in the Execute stage, which will be written into the

register. The other way the value is loaded from the memory

only when execute lw instruction. In order to distinguish the

value to be forwarded, we need add a two-input multiplexer in

the Memory stage.

If the Execute stage, Memory stage and Writeback stage

contain matching destination register together, the Execute

stage should have highest priority, because it contains the

2 3 4 5 6 7 8 91

F E M WD C

F E M WD C

F E M WD C

F E M WD C

time

$s3add $s2$s0

and $t0 $s0 $s1

$t1 $s4 $s0

sub $t2 $s0 $s5

or

Fig. 4 Abstract pipelined diagram illustrating forwarding

more recently executed instruction, the Memory stage is

second, the Writeback stage is the last.

 In order to let the readers understand the signal used in the

paper, we will give table IV below to explain the function of

the signals used.

TABLE IV
HAZARD UNIT SIGNAL

Signal

Name

Functional Description

forwardaC A control signal to the four-input

multiplexer

forwardbC A control signal to the four-input

multiplexer

lwstallC Lw instruction stall signal

stallF A control signal to stall Fetch stage

register

stallD A control signal to stall Decode stage

register

stallC A control signal to stall Choose stage

register

flushE A control signal to flush Execute stage

register

flushD A control signal to flush Decode stage

register

flushC A control signal to flush Choose stage

register

4

 In summary, the function of the forwarding logic for SrcA

is given below. The function of the forwarding logic for SrcB

is identical except that it checks rt rather than rs.

if(rsC!=0)

if(rsC==writeregE®writeE)

 forwardaC=2'b01;

else if(rsC==writeregM®writeM)

 forwardaC=2'b10

 else if(rsC==writeregW®writeW)

 forwardaC=2'b11;

Forwarding is sufficient to solve RAW hazards when the

result is computed in the Execute stage of an instruction,

because its result can then be forwarded to the Choose stage

of the next instruction. Unfortunately, the LW instruction does

not finish reading data until the end of the Memory stage, so

its results can not be forwarded to the Choose stage of the next

instruction. We say that the lw instruction has two-cycle

latency, because a dependent instruction cannot use its result

until two cycles later.

Figure 5 shows this problem. The lw instruction receive

data from memory at the end of cycle 5. But the and

instruction needs that data as a source operand at the

beginning of cycle 5. There is no way to solve this hazards

with forwarding.

2 3 4 5 6 7 8 91

F E M WD C

F E M WD C

F E M WD C

F E M WD C

time

trouble

lw 40($0)$s0

and $t0 $s0 $s1

or

sub $t2 $s0 $s5

$t1 $s4 $s0

Fig. 5 Abstract pipelined diagram illustrating hazards from lw

The alternative solution is to stall the pipeline, holding up

operation until the data is available. Figure 6 shows stalling

the dependent instruction (and) in the Choose stage in cycle 4

and stalls there through cycle 4. The subsequent instruction

(or) must remain in the Decode stage during both cycles as

well, because the Choose stage is full. The next instruction

(sub) must remain in Fetch stage.

In cycle 5, the result can be forwarded from Memory stage

of the lw instruction to the Choose stage of the and instruction.

In cycle 6, the result can be forwarded from Writeback stage

of the lw instruction to the Choose stage of the and instruction.

 In cycle 6, source $s0 of the sub instruction is read

directly from the register file, with no need for forwarding.

When a lw stall occurs, stallC, stallD and stallF are asserted

to force the Choose stage, Decode stage and Fetch stage to

hold their old values. We also need flush the contents of the

Execute stage pipeline register.

The MemtoReg signal is asserted for lw instruction. Hence,

the logic to compute the stalls and flushes is

lwstallC=memtoregE&(writeregE==rsC|writeregE==rtC)

 stallC=lwstallC

 stallF=stallD=stallC

 flushE=stallC

2 3 4 5 6 7 8 91

F E M WD C

F C E MD C

F C E MD D

F C E MF D

time

stall

lw 40($0)$s0

and $t0 $s0 $s1

or

sub $t2 $s0 $s5

$t1 $s4 $s0

Fig. 6 Abstract pipelined diagram illustrating stall to solve hazards

2) Control hazards:

The beq instruction and jump instruction present a control

hazard: the pipelined processor does not know what

instruction to fetch next, because the branch and jump

decisions have not been made by the time the next instruction

is fetched.

One mechanism for dealing with the control hazard is to

stall the pipelined until the branch and jump decision is made.

Because the decision is made in Memory stage, the pipelined

would have to be stalled for four cycles at every branch or

jump instruction. This would severely degrade system

performance.

An alternative is to predict whether the branch will be taken

and begin executing instruction based on the prediction. Due

to jump instruction is always executed, we need not predict it.

Once the branch decision is available, the processor can

throw out the instruction if the prediction was wrong. In

particular, suppose that we predict that branches are not taken

and simply continue executing the program in order. If the

branch should have been taken, the four instructions following

the branch must be flushed.

Figure 7 shows such a scheme, in which a branch from

address 20 to address 64 is taken. The branch decision is not

made until cycle 5, by which point the and, or, sub, and addi

5

instructions at address 24, 28, 2C and 30 have already been

fetched. These instructions must be flushed, and the slt

instruction is fetched from address 64 in cycle 6. This is

F E M WD C

2 3 4 5 6 7 8 9 101

F E M WD C

F E M WD C

F E M WD C

F E M WD C

F E M WD C
flus

h

40

$s1

$s0

$s5

20

24

28

2c

30
…

5

64 slt $t3 $s2 $s3

time

beq $t2$t1

and $t0 $s0

or $t1 $s4

$t2 $s0sub

addi $7 $7

Fig. 7 Abstract pipelined diagram illustrating flushing

somewhat of an improvement, but flushing so many

instructions when the branch is taken still degrades

performance.

We could reduce the branch misprediction penalty if the

branch decision could be made earlier. Making the decision

simply requires comparing the values of two register. Using a

dedicated equality comparator is much faster than performing

a subtraction and zero detection.

Considering placing the comparator in the Decode stage

will prolong the time of processor cycle. So we put the

comparator in the Choose stage, so that the operands are

passed from the register file and compared to determine the

next PC by the end of the Choose stage.

Figure 8 shows the pipeline operation with the early branch

decision being made in cycle 3. In cycle 4, the and and or

instruction are flushed and the slt instruction is fetched. Now

the branch misprediction penalty is reduced to only two

instruction rather than four.

Besides we compute the transfer address of the jump

instruction in the Choose stage. So we can make sure that the

branch and jump instruction in the Choose stage. EqualC is

the result of the comparator. The flush signals are given below.

pcsrcC= branchC&equalC

flushC=pcsrcC|jumpC

flushD=flushC

flush

F E M WD C

2 3 4 5 6 7 8 9 101

F E M WD C time

F E M WD C

F E M WD C

40

$s1

$s0

$s5

20

24

28

2c

30
…

$2

64 slt $t3 $s2 $s3

beq $t2$t1

and $t0 $s0

or $t1 $s4

$t2 $s0sub

addi $7 $7

Fig. 8 Abstract pipelined diagram illustrating earlier branch decision

3) Hazards summary:

In summary, RAW data hazards occur when an instruction

depends on the result of another instruction that has not yet

been written into the register. The data hazards can be solved

by forwarding if the result is computed soon enough;

otherwise, they require stalling the pipeline until the result is

available. Control hazards occur when the decision of what

instruction to fetch has not been made by the time the next

instruction must be fetched. Control hazards are solved by

predicting which instruction should be fetched and flushing

the pipeline if the prediction is later determined to be wrong.

Moving the decision as early as possible minimizes the

number of instructions that are flushed on a misprediction

([3], [4]).

Fig. 9 the wave of simulation

6

III. SIMULATION AND SYNTHESIS

A Simulation In Modelsim

We use verilog language to describe the design of six-stage

pipelined in this paper, with the ModelSim to simulate.

Figure 9 shows the waveform of the simulation. InstrF is

the instruction which is fetched from instruction memory in

the Fetch stage. The clk is the clock used in simulation.We

can see from the Figure 9 one instruction is fetched in every

cycle.

Because the simulation in ModelSim is functional

simulation, it does not take the sequential design into

consideration.

Figure 10 show the project of the six-stage pipelined. It

contains many modules. The hazards unit is key module in the

pipelined processor.

Fig. 10 the project structure diagram

The hazard module codes are given below. The suffix F, D,

C, E, M and W imply the signal is used in Fetch stage, Decode

stage, Choose stage, Execute stage, Memory stage and

Writeback stage.

module hazard (input [4:0] rsC,rtC,

 input [4:0] writeregE,

 writeregM,writeregW,

 input regwriteE,regwriteM,regwriteW,

 input memtoregE,

 output reg [1:0] forwardaC,forwardbC,

 output stallF,stallD,stallC,flushE);

 wire lwstallC;

//forwarding sources to C stage (choose)

 always@(*)

 begin

 forwardaC=2'b00;forwardbC=2'b00;

 if(rsC!=0)

 if(rsC==writeregE®writeE)

 forwardaC=2'b11;

 if(rtC!=0)

 if(rtC==writeregE®writeE)

 forwardbC=2'b01;

 else if(rtC==writeregM®writeM)

 forwardbC=2'b10;

 else if(rtC==writeregW®writeW)

 forwardbC=2'b11;

end

// stalls

 Assign

lwstallC=memtoregE&(writeregE==rsC|writeregE==rtC);

 assign #1 stallC=lwstallC;

 assign #1 stallD=stallC;

 assign #1 stallF=stallD;

 //stalling C stalls all previous stages

 assign #1 flushE=stallC;

endmodule

The control module also plays an important role in

pipelined processor. The control unit examines the opcode and

funct fields of the instruction in Decode stage to produce the

control signals. We can see it clearly in figure 1. This control

signals must be pipelined along with the data so that they

remain synchronized with instruction.

In order to understand how the control signals are passed,

we will give the code of control module below.

module controller(input clk,reset,

 input [5:0] opD,functD,

 input flushE,stallC,flushC,equalC,

 output memtoregC, memtoregE,memtoregM,

 output memtoregW,memwriteM,

 output pcsrcC,branchC,alusrcC,

 output regdstC,regwriteC,regwriteE,

 output regwriteM,regwriteW,

 output jumpC,

 output [2:0] alucontrolE);

 wire [1:0] aluopD;

 wire memtoregD,memwriteD,alusrcD,

 regdstD,regwriteD;

 wire [2:0] alucontrolD,alucontrolC;

 wire memwriteC,memwriteE;

 maindec md(opD,memtoregD,memwriteD,branchD,

 alusrcD,regdstD,regwriteD,jumpD,

 aluopD);

 aludec ad(functD,aluopD,alucontrolD);

 assign pcsrcC= branchC&equalC;

 //pipeline registers

 flopenrc #(10) regC(clk,reset,~stallC,flushC,

 {memtoregD,memwriteD,alusrcD,

 regdstD,regwriteD,alucontrolD,jumpD,branchD},

 {memtoregC,memwriteC,alusrcC,

 regdstC,regwriteC,alucontrolC,jumpC,branchC});

7

 floprc #(6) regE(clk,reset,flushE,

 {memtoregC,memwriteC,

 regwriteC,alucontrolC},

 {memtoregE,memwriteE,

 regwriteE,alucontrolE});

 flopr #(3) regM(clk,reset,

 {memtoregE,memwriteE,regwriteE},

 {memtoregM,memwriteM,regwriteM});

 flopr #(2) regW(clk,reset,

 {memtoregM,regwriteM},

 {memtoregW,regwriteW});

endmodule

B Synthesis In FGA

If the project simulation succeeds in Modelsim, it implies

that the design is correct in logic. The next step we can create

a new project in QuartusⅡadding the contents of the project

from Modelsim.

The complication report of the six-pipelined processor is

given in Table V. We use the DE2 development board of

Cyclone Ⅱ series. It can be seen from the table the total

resources used in design are less than 3%. The lower

processor resource utilization will lay the foundation for

constructing a SoPC system using processor as the core.

TABLE V

COMPLICATION REPORT-FLOW SUMMARY

Resources Type or the use of
resources

Family Cyclone Ⅱ

Device EP2C35F672C6

Met timing requirements Yes

Total logic elements 914/33,216(3%)

Total combinational functions 759/33,216(2%)

Dedicated logic registers 539/33,216(2%)

Total registers 539

Total pins 68/475(14%)

Total memory bits 4096/483,840(<1%)

Besides, the integrated module is given in Figure 11. It

contains three sub module: imem module, dmem module and

mips module. Imem is instruction memory used in Fetch stage.

Dmem is data memory used in Memory stage. Mips is

responsible for executing instructions.

Fig. 11 the integrated module diagram

In this design, the instruction memory and data memory use

logic elements in DE2 board to accomplish. The alternative is

to use the memory device in DE2 board. There are three types

of memory to select in DE2 board.

SRAM

• 512-Kbyte Static RAM memory chip

• Organized as 256K x 16 bits

• Accessible as memory for the Nios II processor and by

the DE2 Control Panel

SDRAM

• 8-Mbyte Single Data Rate Synchronous Dynamic RAM

memory chip

• Organized as 1M x 16 bits x 4 banks

 • Accessible as memory for the Nios II processor and by

the DE2 Control Panel

 Flash memory

• 4-Mbyte NOR Flash memory (1 Mbyte on some boards)

• 8-bit data bus

• Accessible as memory for the Nios II processor and by

the DE2 Control Panel

Table Ⅵ shows the pin allocation of MIPS processor in the

DE2 development board. The frequency can reach 81.70MHZ.

TABLE Ⅵ

COMPLICATION REPORT-FLOW SUMMARY

function The port of

design

PINS on

DE2

Digital oscillator

（50 MHZ）

clock PIN_N2

Reset signal reset PIN_N25

Verifying the led

signal

led PIN_AA13

We need to load a section of code to the instruction

memory at first when verify the design. The instructions are

composed of add instruction, sub instruction, and instruction,

or instruction, slt instruction, addi instruction, lw instruction,

sw instruction, beq instruction, jump instruction and so on at

random([5], [6]).

Only when all instructions are executed correctly, can we

get correct result. As for this paper, If the program runs

8

correctly, we need to write the value 7 into address 84 in the

memory. The check codes are given below.

always@(negedge clk)

begin

 if(memwrite)begin

 if(dataadr===84&writedata===7)

 led=1;

 end

 else if(dataadr!==80)begin

 led=0;

 end

end

After configuring, we download the design to the DE2

development board. We can see the led lights implying led=1

so the design of the pipeline is correct.

IV. SUMMARY

Design of pipelined processors is the main method to

improve the work efficiency of the processor. In this paper we

design a six-stage pipelined processor originally. It divides the

processor into six stages according to its function and makes

each stage balanced. We also verify it in the FPGA

development board to ensure the correctness of design.

After synthesis, the work frequency can reach 81.7MHZ.

The realization of the design lays the foundation for studying

more complex and efficient processor design.

The most paper we have seen about the six-stage pipeline

processor is the students in Tsinghua University, as described

in [7]. The work frequency of their can reach 53.6MHZ,

compared with them the design in this paper improve the

Performance.

ACKNOWLEDGMENT

Many thanks to Yang Ding-ding, Ying Juan for their

contributions to the research work at this system.

Many thanks to Altera Corp. for supplying excellent FPGA

chips and development board.

REFERENCES

[1] (2013) The 360 website. [Online]RISC. http://baike.so.com/.
[2] David Money Harris and Sarah L.Harris, Digital Design and Computer

Arccchitecture, America:Proprietor, 2007.

[3] ZhouNi, QiaoFei, TanSisi, LI Chang, and YangHuazhong, “Design for
Testability of a32-Bit MIPS Processor and Its Implementation,”

Microelectronics., vol. 40, pp. 782–791, Dec. 2010.

[4] Xue Bo, Zhou Yu-jie, “Design of CPU Simulator Compatible with
MIPS32 Instruction Set,” Computer Engineering., vol. 35, pp. 263–265,

Jan. 2009.

[5] Bai Zhongying，Dai Zhitao and Zhou Feng, Principles of computer

composition, 4th ed., Bai Zhongying, Ed. Beijing, China: Science

Press, 2008

[6] Yang Quansheng ， Wang Xaowei and Zhang Zhizhen, The

comprehensive curriculum design of computer systems, 1st ed., Yang
Quansheng., Ed. Beijing, China: Tsinghua University press, 2008.

[7] Li Chang, “Design of MIPS EmbeddedMicroprocessor,” M. Eng.

thesis, Tsinghua University, Beijing, China, May. 2010.

