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Abstract—We design a 32-bit embedded six-stage pipelined 

processor which is compatible with MIPS instruction set. The six 

stages make the task of each stage balanced. We use forwarding 

and stalling to solve data hazards. Control hazards are solved by 

predicting which instruction should be fetched and when the 

pipeline will be flushed if the prediction is later determined to be 

wrong. The processor is implemented in DE2 development board, 

and its operating clock frequency can be up to 81.7MHz. In the 

end we present the comprehensive results of the design. Besides, 

we show the software simulation and hardware verification to 

prove the correctness of the design. 

 
Keywords—MIPS; embedded; pipelined processor; hazards; 
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I. INTRODUCTION 

It proves that about 20% instructions in computer  take  the 

80% of all the task by John Cocke, who first introduced the 

conception of RISC in 1947([1]),  working in IBM research 

center in York of New York city. The first computer made by 

this theory is The IBM PC/XT in 1980. Later, IBM RISC 

System / 6000  also made  use of  this. The word RISC  itself 

belongs to David Patterson a teacher at the university of 

California in Berkeley. The concept of  RISC is also used by 

Sun's SPARC microprocessor, which promotes  the 

technology of MIPS.  

RISC technology has been an active field of computer 

development, especially  in the embedded application. Today, 

almost all of the embedded microprocessor take RISC 

architecture in the market. These embedded microprocessors 

have been widely applied in real-time industrial control 

systems, multimedia, wireless network, and plays an 

important role as a core component of these systems. In this 

paper we design a 32-bit embedded six-stage pipelined 

processor with the high performance which is compatible with 

MIPS instruction set, based on analyzing the system structure 

of MIPS, combined with the  flexibility characteristics of  

FPGA. 

II. DESIGN AND IMPLEMENTATION 

A.  The design of the six- stage pipeline 

The five-stage pipelined processor is classical   pipelined 

processor, namely the data path is divided into five stages. In 

this paper, we design a six-stage pipeline processor. Specially, 

we call the six stages Fetch, Decode, Choose, Execute, 

Memory  and  Writeback.  

In the Fetch stage, the processor reads the instruction from 

instruction memory. In the Decode stage, the processor reads 

the source operands from the register file and decodes the 

instruction to produce the control signals. In order to solve 

hazards, in the Choose stage, the processor selects the 

operands, which will be the two input ports of ALU  in  

Execute stage. In the Execute stage, the processor performs a 

computation with ALU. In the Memory stage, the processor 

reads or writes the data memory. Finally, In the Writeback 

stage, the processor writes the result to the register file, when 

applicable.  Figure 1 shows the six-stage pipeline diagram. 

B.     The design of control signal 

As the key part of processor, the control unit computes the 

control signals based on the opcode and funct fields of the 

instruction, Instr31:26 and Instr5:0 .  

Most of  the control information comes from the opcode, 

but R-type instruction also use the funct field to determine the 

ALU operation. Thus, we will simplify our design by 

factoring the control unit into two blocks of combinational 

logic, as shown in Figure 2. The main decoder computes most 

of  the outputs from the opcode. It also determines a 2-bit 

ALUOP signal. The ALU decoder uses this ALUOP signal in 

conjunction with the funct field to compute ALUControl. The 

meaning of  the ALUOp signal is given in table I. 

Table Ⅱ is a truth table for the ALU decoder. Because 

ALUOp is never 11, the truth table can use do not care X1 

and1X instead of 01 and 10 to simply the logic. When  

ALUOp is 00 or 01, the ALU should add or subtract, 

respectively.  When ALUOp is 10, the decoder examines the  

funct field to determine the ALUControl. Note that, for the R-

type instructions we implement, the first two bits of the funct 

field are always 10, so we may ignore them to simply the 

decoder. 

 

TABLE II 

 ALUOP  ENCODING 

ALUOp Meaning 

00 add 

01 subtract 

10 Look at funct field 

11 n/a 
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Fig. 1 The six stage pipeline diagram 
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Fig. 2 Control unit internal structure 

 
The control signals for each instruction were described as 

we built the datapath. Table III is the truth table for the main 

decoder that summarizes the control signals as a function of 

the opcode. All R-type instructions use the same main decoder 

values; they differ only in the ALU decoder output. For 

instructions that do not write to the register file(e.g., sw and 

beq), the RegDst and MemtoReg control signals are don't not 

cares(X); the address and data to the register write port do not 

matter because RegWrite is not asserted. The logic for the 

decoder can be designed using combinational logic design. 

TABLE II 

 ALU DECODER TRUTH TABLE 

ALUOp funct ALUControl 

00 X 010(add) 

X1 X 110(subtract) 

1X 100000(add) 010(add) 

1X 100010(sub) 110(subtract) 

1X 100100(and) 000(and) 

1X 100101(or) 001(or) 

1X 101010(slt) 111(set less than) 

 

TABLE  III 
MAIN DECODER TRUTH TABLE 

instruction opcode R

W 
RD ALUsrc Branc

h 
M

W 
M

R 
ALUOp 

R-type 000000 1 1 0 0 0 0 10 

Lw 100011 1 0 1 0 0 1 00 

Sw 101011 0 X 1 0 1 X 00 

Beq 000100 0 X 0 1 0 X 01 

 

C.     The solutions to the hazards 
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A central challenge in pipelined systems is handling 

hazards. In a pipelined system multiple instructions are 

handled concurrently. When  one instruction is dependent on 

the results of another that not yet completed, a hazards occurs. 

Hazards are classified as data hazards or control hazards 

 data hazards:  A data hazard occurs when an instruction 

tries to read a register that  has not yet been written 

back by a previous instruction. 

 control hazards: A control hazards occurs when the 

decision of what instruction to fetch next has not been 

made by the time the fetch takes place ([2]). 

1) Data hazards:   

The register file can be read and written in the same cycle. 

Let us assume that the write takes place during the first half of 

the cycle and the read takes place during the second half of the 

cycle, so that a register can be written and read in the same 

cycle without introducing a hazard. 

Figure 3 illustrates hazards that occur when one instruction 

writes a register ($s0) and subsequent instruction read   the 

register. This is called  a read after write (RAW) hazard. The 

add instruction writes a results into $s0 in the first half of  

cycle  6. However ,the and instruction  reads  $s0  on  cycle  3, 

obtaining  the  wrong  value. 

The or instruction  reads $s0 on the cycle 4, again obtaining  

the  wrong  value. The  sub instruction  reads $s0 on the cycle 

5, still obtaining  the  wrong  value. The next instruction  will 

reads the $s0 in the second half of the cycle 6, since data has 

been written in the first half of the cycle 6, subsequent 

instruction will read the correct value. 

or

F E M WD C

2 3 4 5 6 7 8 91

F E M WD C

F E M WD C

F E M WD C

time

$s3add $s2$s0

and $t0 $s0 $s1

$t1 $s4 $s0

sub $t2 $s0 $s5  
Fig. 3   Abstract pipelined diagram illustrating hazards 

The diagram shows that hazards may occur in this pipeline 

when an instruction writes a register and either of the two 

subsequent instruction read that register. Without specially 

treatment , the  pipeline will compute the wrong result. 

On a closer inspection, however, we observe that the sum 

from the add instruction  is computed by the ALU  in cycle 4 

and is not strictly needed by the and instruction  until the ALU 

uses it in cycle 5. In principle, we should be able to forward 

the result from one instruction to the next to solve the RAW 

hazard without slowing down the pipeline. Figure 4 shows 

that how to solve the data hazards with forwarding. In cycle 4, 

$s0 is forwarded from the Execute stage of the add instruction  

to the Choose stage of the and instruction. In cycle 5, $s0 is 

forwarded from the Memory stage of the add instruction to the 

Choose stage of the or instruction. In cycle 6, $s0 is forwarded 

from the Writeback stage of the add instruction  to the Choose 

stage of the sub instruction. 

 There are two ways that the data obtained in the Memory 

stage. One way the value is the result that is computed by the  

ALU in the Execute stage, which will be written into the 

register. The other way the value is loaded from the memory 

only when execute lw instruction. In order to distinguish the 

value to be forwarded, we need add a two-input multiplexer in 

the Memory stage. 

If the Execute stage, Memory stage and Writeback stage 

contain matching destination register together, the Execute 

stage  should have highest priority, because it contains the 
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Fig. 4   Abstract pipelined diagram illustrating forwarding 

more recently executed instruction, the Memory stage is 

second, the Writeback stage is the last. 

   In order to let the readers understand the signal used in the 

paper, we will give table IV below to explain the function of 

the signals used. 

TABLE IV 
HAZARD UNIT  SIGNAL 

Signal 

Name 

Functional Description 

forwardaC A control signal to the four-input 

multiplexer 

forwardbC A control signal to the four-input 

multiplexer 

lwstallC Lw instruction stall signal 

stallF A control  signal to stall Fetch stage 

register 

stallD A control  signal to stall Decode stage 

register 

stallC A control  signal to stall Choose stage 

register 

flushE A control  signal to flush Execute stage 

register 

flushD A control  signal to flush Decode stage 

register 

flushC A control  signal to flush Choose stage 

register 
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   In summary, the function of the forwarding logic for SrcA 

is given below. The function of the forwarding logic for SrcB 

is identical except that it checks rt rather than rs. 

 

if(rsC!=0) 

if(rsC==writeregE&regwriteE) 

 forwardaC=2'b01; 

else if(rsC==writeregM&regwriteM) 

  forwardaC=2'b10 

  else if(rsC==writeregW&regwriteW) 

   forwardaC=2'b11; 

 

Forwarding is sufficient to solve RAW hazards when the 

result is computed in the Execute stage of an instruction, 

because its result can then be forwarded to the Choose stage 

of the next instruction. Unfortunately, the LW instruction does 

not finish reading data until the end of the Memory stage, so 

its results can not be forwarded to the Choose stage of the next  

instruction. We say that the lw instruction has two-cycle 

latency, because a dependent instruction cannot use its result 

until two cycles later.  

Figure 5 shows this problem. The lw instruction receive 

data from memory at the end of cycle 5. But the and 

instruction needs that data as a source operand at the 

beginning of cycle 5. There is no way to solve this hazards 

with forwarding. 
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Fig. 5   Abstract pipelined diagram illustrating hazards from lw 

The alternative solution is to stall the pipeline, holding up 

operation until the data is available. Figure 6 shows stalling 

the dependent instruction (and) in the Choose stage in cycle 4 

and stalls there through cycle 4. The subsequent instruction 

(or) must remain in the Decode stage during both cycles as 

well, because the Choose stage is full. The next instruction 

(sub) must remain in Fetch stage. 

In cycle 5, the result can be forwarded from Memory stage 

of the lw instruction to the Choose stage of the and instruction. 

In cycle 6, the result can be forwarded from Writeback stage 

of the lw instruction to the Choose stage of the and instruction.  

  In cycle 6, source $s0 of  the sub instruction is read 

directly from the register file, with no need for forwarding. 

When a lw stall occurs, stallC, stallD and stallF are asserted 

to force the  Choose stage, Decode stage and Fetch stage to 

hold their old values. We also need flush the contents of the 

Execute stage pipeline register. 

The MemtoReg signal is asserted for lw instruction. Hence, 

the logic to compute the stalls and flushes is 

 

lwstallC=memtoregE&(writeregE==rsC|writeregE==rtC)    

 stallC=lwstallC 

   stallF=stallD=stallC 

 flushE=stallC 
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Fig. 6 Abstract pipelined diagram illustrating stall to solve hazards 

2) Control  hazards: 

The beq instruction and jump instruction present a control 

hazard: the pipelined processor does not know what  

instruction to fetch next, because the branch and jump 

decisions have not been made by the time the next instruction 

is fetched. 

One mechanism for dealing with the control hazard is to 

stall the pipelined until the branch and jump decision is made. 

Because the decision is made in Memory stage, the pipelined 

would have to be stalled for four cycles at every branch or 

jump instruction. This would severely degrade system 

performance. 

An alternative is to predict whether the branch will be taken 

and begin executing instruction based on the prediction. Due 

to jump instruction is always executed, we need not predict it. 

Once the branch decision is available, the processor can 

throw out the instruction if the prediction was wrong. In 

particular, suppose that we predict that branches are not taken 

and simply continue executing the program  in  order. If the 

branch should have been taken, the four instructions following 

the branch must be flushed.  

Figure 7 shows such a scheme, in which a branch from 

address 20 to address 64 is taken. The branch decision is not 

made until cycle 5, by which point the and, or, sub, and addi 
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instructions at address 24, 28, 2C and 30 have already been 

fetched. These instructions must be flushed, and the slt 

instruction is fetched from address 64 in cycle 6. This is  
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Fig. 7 Abstract pipelined diagram illustrating flushing 

somewhat of an improvement, but flushing so many 

instructions when the branch is taken still degrades 

performance. 

We could reduce the branch misprediction penalty if the 

branch decision could be made earlier. Making the decision 

simply requires comparing the values of two register. Using a 

dedicated equality comparator is much faster than performing 

a subtraction and zero detection. 

Considering placing the comparator in the Decode stage 

will prolong the time of processor cycle. So we put the 

comparator in the Choose stage, so that the operands are 

passed from the register file and compared to determine the 

next PC by the end of the Choose stage. 

Figure 8 shows the pipeline operation with the early branch 

decision being made in cycle 3. In cycle 4, the and and or 

instruction are flushed and the slt instruction is fetched. Now 

the branch misprediction penalty is reduced to only two 

instruction rather than four. 

Besides we compute the transfer address of the jump 

instruction in the Choose stage. So we can make sure that the 

branch and jump instruction in the Choose stage. EqualC is 

the result of the comparator. The flush signals are given below. 

pcsrcC= branchC&equalC 

flushC=pcsrcC|jumpC 

flushD=flushC 
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Fig. 8 Abstract pipelined diagram illustrating earlier branch decision 

3)   Hazards summary: 

In summary, RAW data hazards occur when an instruction 

depends on the result of another instruction that has not yet 

been written into the register. The data hazards can be solved 

by forwarding if the result is computed soon enough; 

otherwise, they require stalling the pipeline until the result is 

available. Control hazards occur when the decision of what 

instruction to fetch has not been made by the time the next 

instruction must be fetched. Control hazards are solved by 

predicting which instruction should be fetched and flushing 

the pipeline if the prediction is later determined to be wrong. 

Moving the decision as early as possible minimizes the 

number of instructions that are flushed on a misprediction   

([3], [4]). 

 
 

Fig. 9  the wave of simulation
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III.  SIMULATION AND SYNTHESIS 

A  Simulation  In  Modelsim 

We use verilog language to describe the design of six-stage 

pipelined in this paper, with the ModelSim to simulate. 

Figure 9 shows the waveform of the simulation. InstrF is 

the instruction which is fetched from instruction memory in 

the Fetch stage. The clk is the clock used in simulation.We 

can see from the Figure 9 one instruction  is fetched in every 

cycle. 

Because the simulation in ModelSim is functional 

simulation, it does not take the sequential design into 

consideration. 

Figure 10 show the project of the six-stage pipelined. It 

contains many modules. The hazards unit is key module in the 

pipelined processor. 

 

 
Fig. 10  the project structure diagram 

The hazard module codes are given below. The suffix F, D, 

C, E, M and W imply the signal is used in Fetch stage, Decode 

stage, Choose stage, Execute stage, Memory stage and  

Writeback stage. 

module hazard (input [4:0] rsC,rtC, 

   input [4:0] writeregE, 

  writeregM,writeregW, 

  input regwriteE,regwriteM,regwriteW, 

   input memtoregE, 

  output reg [1:0] forwardaC,forwardbC, 

  output stallF,stallD,stallC,flushE); 

  wire lwstallC; 

//forwarding sources to C stage (choose) 

 always@(*) 

 begin 

 forwardaC=2'b00;forwardbC=2'b00; 

  if(rsC!=0) 

   if(rsC==writeregE&regwriteE) 

           forwardaC=2'b11; 

 if(rtC!=0) 

  if(rtC==writeregE&regwriteE) 

    forwardbC=2'b01; 

  else if(rtC==writeregM&regwriteM) 

      forwardbC=2'b10; 

  else if(rtC==writeregW&regwriteW) 

   forwardbC=2'b11; 

end 

// stalls  

 Assign 

lwstallC=memtoregE&(writeregE==rsC|writeregE==rtC); 

 assign #1 stallC=lwstallC; 

 assign #1 stallD=stallC; 

 assign #1 stallF=stallD; 

 //stalling C stalls all previous stages 

 assign #1 flushE=stallC; 

endmodule 

 

The control module also plays an important role in 

pipelined processor. The control unit examines the opcode and 

funct fields of the instruction in Decode stage to produce the 

control signals. We can see it clearly in figure 1. This control 

signals must be pipelined along with the data so that they 

remain synchronized with instruction. 

In order to understand how the control signals are passed, 

we will give the code of control module below. 

module controller(input clk,reset, 

        input [5:0] opD,functD, 

        input flushE,stallC,flushC,equalC, 

  output memtoregC, memtoregE,memtoregM, 

        output memtoregW,memwriteM, 

               output pcsrcC,branchC,alusrcC, 

               output regdstC,regwriteC,regwriteE, 

  output regwriteM,regwriteW, 

  output jumpC, 

  output [2:0] alucontrolE); 

 wire [1:0] aluopD; 

 wire memtoregD,memwriteD,alusrcD, 

   regdstD,regwriteD;  

 wire [2:0] alucontrolD,alucontrolC; 

 wire memwriteC,memwriteE; 

 

 maindec md(opD,memtoregD,memwriteD,branchD, 

    alusrcD,regdstD,regwriteD,jumpD, 

      aluopD); 

 

 aludec ad(functD,aluopD,alucontrolD); 

 assign pcsrcC= branchC&equalC; 

  

 //pipeline registers 

 flopenrc #(10) regC(clk,reset,~stallC,flushC, 

   {memtoregD,memwriteD,alusrcD, 

 regdstD,regwriteD,alucontrolD,jumpD,branchD}, 

   {memtoregC,memwriteC,alusrcC, 

 regdstC,regwriteC,alucontrolC,jumpC,branchC}); 
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 floprc #(6) regE(clk,reset,flushE, 

   {memtoregC,memwriteC, 

   regwriteC,alucontrolC}, 

   {memtoregE,memwriteE, 

   regwriteE,alucontrolE}); 

 flopr #(3)  regM(clk,reset, 

  {memtoregE,memwriteE,regwriteE}, 

  {memtoregM,memwriteM,regwriteM}); 

 

 flopr #(2)   regW(clk,reset, 

  {memtoregM,regwriteM}, 

  {memtoregW,regwriteW}); 

endmodule 

B  Synthesis  In  FGA 

If the project simulation succeeds in Modelsim, it implies 

that the design is correct in logic. The next step we can create 

a new project in QuartusⅡadding the contents of the project 

from  Modelsim. 

The complication report of the six-pipelined processor is 

given in Table V. We use the DE2 development board of 

Cyclone Ⅱ  series. It can be seen from the table the total 

resources used in design are less than 3%. The lower 

processor resource utilization will lay the foundation for 

constructing a SoPC system using processor as the core. 

TABLE V 

COMPLICATION REPORT-FLOW SUMMARY 

Resources Type or the use of 
resources 

Family  Cyclone Ⅱ 

Device EP2C35F672C6 

Met timing requirements Yes 

Total logic elements 914/33,216(3%) 

Total combinational functions 759/33,216(2%) 

Dedicated logic registers 539/33,216(2%) 

Total registers 539 

Total pins 68/475(14%) 

Total memory bits 4096/483,840(<1%) 

 
Besides, the integrated module is given in Figure 11. It 

contains three sub module: imem module, dmem module and 

mips module. Imem is instruction memory used in Fetch stage. 

Dmem is data memory used in Memory stage. Mips is 

responsible for executing instructions. 

 
Fig. 11 the integrated module diagram 

In this design, the instruction memory and data memory use 

logic elements in DE2 board to accomplish. The alternative is 

to use the memory device in DE2 board. There are three types 

of  memory  to select in DE2 board. 

SRAM  

•  512-Kbyte Static RAM memory chip  

•  Organized as 256K x 16 bits  

•  Accessible as memory for the Nios II processor and by 

the DE2 Control Panel  

SDRAM  

•  8-Mbyte Single Data Rate Synchronous Dynamic RAM 

memory chip  

•  Organized as 1M x 16 bits x 4 banks  

    •  Accessible as memory for the Nios II processor and by 

the DE2 Control Panel  

 Flash memory  

•  4-Mbyte NOR Flash memory (1 Mbyte on some boards)  

•  8-bit data bus  

•  Accessible as memory for the Nios II processor and by 

the DE2 Control Panel 

Table Ⅵ shows the pin allocation of  MIPS processor in the 

DE2 development board. The frequency can reach 81.70MHZ.  

TABLE  Ⅵ 

COMPLICATION REPORT-FLOW SUMMARY 

function The port of 

design 

PINS on 

DE2 

Digital oscillator

（50 MHZ） 

clock PIN_N2 

Reset signal reset PIN_N25 

Verifying the led 

signal 

led PIN_AA13 

 
We need to load a section of code to the instruction 

memory at first when verify the design. The instructions are 

composed of add instruction, sub instruction, and instruction, 

or instruction, slt instruction, addi instruction, lw instruction, 

sw instruction, beq instruction, jump instruction and so on at 

random([5], [6]). 

Only when all  instructions are executed correctly, can we 

get correct result. As for this paper, If the program runs 
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correctly, we need to write the value 7  into address 84 in the 

memory. The check codes are given below. 

always@(negedge clk) 

begin 

   if(memwrite)begin 

   if(dataadr===84&writedata===7) 

     led=1; 

     end  

    else if(dataadr!==80)begin 

  led=0; 

  end 

end 

After configuring,  we download  the design to the DE2 

development board. We can see the led lights implying led=1 

so the design of the pipeline is correct. 

 

IV.   SUMMARY 

Design of pipelined processors is the main method to 

improve the work efficiency of the processor. In this paper we 

design a six-stage pipelined processor originally. It divides the 

processor into six stages according to its function and makes 

each stage balanced. We also verify it in the FPGA 

development board to ensure the correctness of design. 

After synthesis, the work frequency can reach 81.7MHZ. 

The realization of the design lays the foundation for studying 

more complex and efficient processor design. 

The most paper we have seen about the six-stage  pipeline 

processor is the students in Tsinghua University, as described 

in [7]. The  work frequency  of  their can reach 53.6MHZ, 

compared with them the design in this paper improve the 

Performance. 
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