

Music Synthesizer Designed on FPGA
Han Liu, Rong Su, and Hui-Min Dai

Sun Yat-Sen University

Guangzhou, the People’s Republic of China

liu16th@gmail.com

Abstract— As touch technology has become a hot spot of

human-computer interaction in recent years, we accomplished

the design--Music Synthesizer on LCD touch screen. We took

use of the resources from board DE2-115, combined with

Verilog HDL and C Language under the environment of

Quartus II and Nios II Eclipse of Altera’s. In the time when

digital music develops in such a high speed, our design can

achieve four different kinds of instruments playing and the

control of changing the timbre, making more people able to

create music themselves under a lower cost.

Keywords— music synthesizer; FPGA design; timbre; SOPC

Builder; Nios II

I. INTRODUCTION

Human-computer interaction, studying communications

and correspondence between human beings and computers,

to the utmost extent, makes information management,

services, processing and other functions possible to work
[1]

.

Along with electronic products like Apple’s iphone, and the

brand Android phone market, panel computers emerged and

predominated in market shares, touch technology has been

widely applied and rapidly developed, providing the public

with a more natural, direct and efficient interactive pattern.

Touch technology, which has broad application prospects,

becomes not only a research but also an application hot spot.

Nowadays it has an enormous consumer market and

application platform. Touch screen has been widely used,

such as private digital assistants, mobile phones and other

applications, gradually turning into an ordinary and familiar

mode of human-computer interaction.

Appeared on the market in recent years, a lot of musical

instruments simulation software has become popular among

consumers, such as “Magic Piano”. As can be seen, the

simulation of instrument entities is implemented by the

design of the touch screen interface. We use our hands to

touch the simulate keyboard and the system will scan signals

through hardware to find the corresponding musical notes.

Every note corresponds to a code, which can be decoded and

output a corresponding note by the audio decoder. Thus, we

can achieve the process of instrument playing.

Our ideas for the design begin from here. So, here comes the

question, what should we do to design a multi-instrument

playing system which is both adjustable and

timbre-controllable?

First, we learned the function of the devices used in the

design.

A. Introduction of FPGA platform

1) DE2-115 demo board

Fig. 1 Structure of DE2-115 demo board [2]

Fig. 1 shows the structure and layout of DE2-115 demo

board. We mainly took use of the Audio CODEC (WM8731)

chip, 24-bit ADC and DAC, whose powerful features help

achieve the audio codec processing. And with Cyclone IV E

FPGA driving VGA synchronization signals and a

three-channel 10-bit high-speed video DAC chip ADV7123

transforming the output digital signals to analog 8-bit RGB

signals, we can achieve the interface picture display.

2) Touch Screen

The design uses the 7-inch TFT-LCD touch screen provided by

the Terasic, with a resolution of 800×3 (RGB) ×480
[3]

,

shown in Fig. 2.

2

Fig.2 Terasic touch screen [4]

On this platform we can make musical instrument entities

turn into virtual interface display. And with hardware and

software driving together, we can make multi-touch and

audio corresponding output available and controllable.

B. Introduction of language

We take Verilog HDL and C Language to achieve the

design, using a combination of hardware and software. Thus,

we can take advantage of either hardware language’s high

speed, accuracy of hardware description, convenience to

maintain and simulate or software language’s flexibility,

high-reliability, error-checking function. The two languages

are inseparably interconnected, which is greatly conducive to

achieve the hardware circuit system better and faster.

C. Design Review

This design uses two softwares Quartus II and Nios II IDE,

with the resources on FPGA development platform DE2-115

demo board. Using Verilog HDL to build the system

hardware platform on Quartus II, we accomplished the

designation of each function module. With embedded SOPC

development tools, integrated soft core, CPU, PLL, memory,

input and output components on FPGA chip. Data controlled

by the Avalon bus, developed with software Nios II IDE,

then we can finish the drive for multi-touch module and the

processing of all data.

Therefore, the highly integrated music synthesizer chip

combines hardware design and software design, with the

abundant resources on FPGA, powerful and efficient ability

to deal with data.

II. MODULE AND FUNCTION

Our design uses the combination of Verilog HDL and C

language to accomplish a playing system of analog electronic

organ, piano, guitar, drums etc., with either automatic demo

play mode or personal play mode on a touchable LCD screen

under the environment of Quartus II and Nios II IDE (11.0) .

The entire system includes five main modules: image display

on LCD interface, real-time touch control, sound synthesize,

instruments switch, play and auto-play.

A. Image Display on LCD Interface

The device used for display module is the 7 inches TFT a-Si

Active Matrix Color LCD, whose resolution is 800×3(RGB)

× 480
[3]

. Image showed under the circumstance of right

horizontal scanning and field scanning frequency.

1) LCD Display Module

The port definition of LCD display module as Fig. 3, in

which iCLK represents clock signal of display, connected to the

33MHz clock signal generated by PLL. iRST_n represents

reset signal, iNote for the currently playing note signal detected

from the touch screen, oHD for horizontal synchronization

signal, i.e., the line sync signal, oVD for vertical sync signal,

i.e., the line sync signal, oDEN for the data valid signal,

oLCD_R, oLCD_G, oLCD_B for red, green and blue

component signals required for LCD display.

Fig. 3 Port definition of LCD display module

When each line scan begins, the line synchronizing signal

oHD is set to low level signal for the first 30 clock cycles,

which shows in Fig. 4 with thpw. And then returns high level

signal, the appearance of each low level represents the start of

every line scan.

The LCD display has a resolution of 800×480, which means

each line has 800 pixels to display, and a field includes 480

lines of pixels. Data can be found in Table I that, the time

required to scan each line is 1056 clock cycles, and each line of

the display contains a horizontal blanking signal and the active

display signal, of which the trailing edge time tnb is about 16

clock cycles, and thpw for 46 clock cycles, cutting front edge

time thfp for 210 clock cycles, effective line show time thd for

about 800 clock cycles.

Field synchronizing signal is similar as line synchronizing

signal, the length of oVD signal is 13 low level signals tvpw of

line cycle, which represents the start of every field scan. Then

return to high level signal, which we can see from Table I that

every field contains 525 line cycles, of which the trailing edge

time tvbp is 10 line cycles, and tvpw for 23 line cycles, tvfp for

22 line cycles, effective field display time is 480 line cycles

which can be seen in Fig. 5.

3

Fig. 4 Line sync signal and RGB data

Fig. 5 Field sync signal and RGB data

TABLE I

REFERENCES FOR LCD DISPLAY

After synthesizing on Quartus II, the RTL view is as below:

Fig. 6 RTL view for LCD display module

2) Piano (Electronic Organ) Display Module

Piano keys are composed of white keys and black keys. This

module will control pixels in sections to display eight white

keys and six black keys in Verilog HDL. The white are 1, 2, 3,

4, 5, 6, 7, +1. The black are #1, #2, #4, #5, #6, #+1, represent

the half-steps.

When white keys are pressed, the pressed key section will be

displayed grey shadows, and when black keys are pressed, the

edge of the key shadow will fade away.

After synthesizing on Quartus II, the RTL view is as below:

Fig. 7 RTL view for Piano display module

3) Guitar Display Module

Different from playing piano, the structure and operation for

guitar is more complex.

It requires both hands simultaneously press and toggle the

strings so that we can change the pitch. Considering the

particularity, we dislodged the grade part, making the constant

chord name replaced.

This module will display six strings and eight chords. It can

be able to choose chords, and touch corresponding strings with

the correct pitch to play.

The image of this module is transferred mainly by master

interface, with coding C language in Nios II, to set up register

to controller. LTM needs to ask SDRAM, where image stored,

for data with a constant frequency 33MHz. LTM controller

sustains master interface, so that LTM controller can

initiatively read SDRAM without Nios II CPU involved.

After synthesizing on Quartus II, the RTL view is as below:

4

Fig. 8 RTL view for Guitar display module

B. Real-Time Touch Control Module

1) Multi-Touch Module

Multi-touch module contains simple gestures control and

touch input, using DE2-115 general input and output

(General Purpose Input / Output, GPIO) to interconnect. We

utilize IP, for user’s input, provided by Terasic to design the

module, and connect it to Avalon bus through SOPC Builder,

processing data with Nios CPU.

After synthesizing on Quartus II, the RTL view is as

below:

Fig. 9 RTL view for Multi-touch module

2) Touch Block

Take piano module as an example, we split the screen into

blocks with keys; calculate for their edge location and their (x,

y); set the scan area in accordance with the corresponding

coordinate length.

If the position pressed belongs to the exact block, then use

the statement “if/ else” to switch to a certain signal, which is

connected to the corresponding output signal that represents the

frequency of the key in order to achieve a total of 14 keys

letting out sounds independently.

C . Sound Synthesize

1) Digital Music Theory

Digital music, using dots, lines and eight Arabic numerals

0-7, constituting a variety of notes, are the basic elements of

music tracks. Here we use this notation to illustrate the way

how the synthesizer functions.

Combined according to certain relations, these notes

constitute a melody. Notes 1-7 represent seven different pitches

in an octave, do, re, mi, fa, so, la, ti. The dot over these seven

musical alphabet means it is 8 degrees higher than the pitch, if

below, means 8 degrees lower than the pitch. Arabic numeral 0

means rest, which means to stop pronunciation. Lines below

numeral indicate the duration of the sound; numerals without

lines behind are called a crotchet, whose sound length is the

basic unit of measure. Every one increase of the segments is

equal to a decrease of playing time. As segments after numeral

increase, sound length increase
[7]

. Table II lists out correspond

relations for different notes.

TABLE II

 RELATIONSHIP BETWEEN NOTES AND BEATS

TABLE III

RELATIONSHIP BETWEEN NOTES AND FREQUENCY

5

Sound length is a relative concept of time, the length of

time is not restricted, may be one second or two. If a

quarter-note is recognized as a second, then play time for

other notes should refer to it as the basic unit of measure. A

half beat is 0.5 second.

The Twelve-tone Equal Temperament stipulates that every

two octaves (such as a midrange 1 and treble 1) have a

frequency difference between them. And every two half-note

have a frequency different rate of 1.059. In addition, the

pitch A (6)’s frequency is 440Hz, between 3, 4 and 7, 1, there

is semitones; the rest are whole tones. Therefore can we

calculate the frequency from 1 to treble 1, as what is

indicated in Table III.

2) Pitch, Timbre and Loudness

The pitch of a sound is also known as its frequency. When

the frequency is high, the wavelength of the sound is shorter.

According to the experimental data from Table III, we can

know that the higher the frequency, the higher the pitch.

Loudness is the characteristic of a sound that is primarily a

psychological correlate of physical strength (amplitude). The

greater the amplitude is, the greater the energy, the greater

the loudness.

Timbre is the characteristic quality of a sound,

independent of pitch and loudness, from which its source or

manner of production can be inferred. Timbre depends on the

relative strengths of the components of different frequencies,

which are determined by resonance.

To be simple, when we play the same pitch on piano and

guitar, they are not sound alike.

Among these three decisive characteristic, timbre is the most

difficult one to simulate, for pitch and loudness can be

expressed by digital number, but timbre is decided by the

entire wave form. Therefore, timbre is a comprehensive

response to all kinds of frequency and intensity.

The reason why different instruments sound ever-changing,

we can draw a conclusion through studying their waves:

 Harmonic wave spectrum of the sound wave and

envelope shape determine the timbre of specific

instrument.

 Overtones generated by tiny vibrations of harmonic

waves are decisive to timbre ineligibly.

 Humans can hear a range of sound between 20 and

20,000 Hz, while musical instruments’ overtone

frequency is far beyond the scope of this.

 What we hear most clearly is the basic frequency of the

wave, which represents the pitch.

 The key to simulate timbre is to simulate harmonic

waves and overtones.

Fig. 10 Fig. 11

Fig. 10 shows the image of the vibration waveform for piano,

pitch 1. Fig. 11 shows the same pitch for guitar. Contrast these

two pictures can we find that when the amplitude of the

waveforms are substantially the same pitch, the structure of

their envelope differs a lot.

As for guitar is a string plucked instrument, we play with our

fingers plucking the strings; piano is a string hit instrument. So

the sound of piano is softer, decays faster, which can be seen

from the waveform.

3) Karplus-Strong algorithm

Karplus-Strong algorithm is simulation behavior through

simulating sine wave attenuation. It is constituted by a delay

line of a short length, which would be decided by the frequency

generated. Its waveform changes all the time in cycle, and the

delay line after filtering simulates the hit or plucked string.

To achieve the algorithm, the main components are: delay

line, percussion, note attenuation and feedback.

The length of the delay line depends on the expected

frequency of the note generated. The fundamental frequency of

the signal, which is the non-zero lowest resonant frequency,

whose phase delay is -2π.

Relative to a given fundamental frequency F0 of the required

delay D can be calculated by the following formula:

D = Fs/F0

Fs is sample rate. In this design, the sample rate is set as

48KHz. The reason why we adopt the high sample rate is that

research shows signals decay faster with short delay line.

Choosing higher sample rate allows to use longer delay line, so

that it can achieve a better attenuation characteristics
[8]

. For

instance, the central C (seen from Table III), whose frequency

is 523.3Hz, has a delay line length of about:

D = 48000/523.3 ≈ 93

Karplus-Strong algorithm defines a low-pass filtered random

noise signal as an initial strike chord signal, similar to the

sound generated randomly from slightly plucked guitar strings.

And the real piano uses the hammering way to generate sound,

so the hit is softer and smoother. To simulate this situation,

hitting triangular waveform is defined as the pulse waveform,

rather than random strike. Therefore, the audio output produced

by this hammer way is smoother than that plucked guitar

sound.

In addition, each of the real piano’s notes is generated not

only by a simple string. Usually two are needed, and slightly

difference in length between them. In order to obtain better

http://dictionary.reference.com/browse/sound
http://dictionary.reference.com/browse/independent
http://dictionary.reference.com/browse/which

6

simulation results, the two strings are coupled together, and

fed back after averaging the output.

D. Instruments Switch

1) Initialize Selection Menu

As shown in Fig. 2, the root directory of selection mode is

a sample of DE2-115 demo board from ALTERA.

Application Selector interface shows when SD card inserted.

We now modified the sample, storing some user-defined

modules in SD card.

2) Instrument Modules Implantation

The SD card provided by Terasic have a memory of 2GB.

If you want to read the modules of different musical

instruments, the program needs to be converted to a binary

BIN file and stored in the SD card.

While the program is divided into two operative parts, the

software part and the hardware part. It needs to turn

compiled SOF file and ELF file to BIN file into the SD card.

The conversion process requires the Nios II Command Shell:

Turn SOF to BIN

Turn ELF to BIN

Turn ELF to BIN within one step

Put hardware bin and software bin into a folder, storing in

the root of SD card. When getting power, selection interface

appears as Fig. 12. Choose PIANO and click LOAD to get

into piano personal playing mode.

Fig. 11 Instrument Switch Mode

E. Playing System

Playing system includes sample tracks auto playing mode

and personal play mode. When switch SW[1] is set to 1, the

system turns out to be sample tracks auto playing mode;

when SW[1] is set to 0, turns personal playing mode. LCD

display control module controls the line sync signal and

vertical sync signal and RGB signals. Playing on the screen,

the LCD brings the touch signal to processor via the touch

control module, and shows the effect of multi-touch. After

obtaining the touch signals, transfer them to the generation

module, and make corresponding key note data, ultimately

through the audio codec module to broadcast sounds.

1) WM8731 Audio Codec Chip

The audio control chip is provided by Wolfson, low-power,

24-bit stereo audio codec chip WM8731
[5]

.

We turned the demo WMA file into WAV file with required

parameters under the operating environment of Cool Edit. As

for WAV file is consist of sample values and file headers,

usually representing sound with quantization bits, sample rate

and amplitude of sample points. We adopt the standard

formatting sample frequency of 44.1KHz, 16-bit quantized

digital stereo.

WAV file will be converted into SD card, and then read the

data out from the SD card into DAC.

Fig. 12 Inner Structure of WM8731

It can be seen from Fig. 12 that the digital audio input enters

the digital filter first, and then processed by the DAC, forming

24-bit files, with little distortion, then put out through the

headphone driver.

Fig. 13 Connection between FPGA and WM8731

Fig. 13 shows the connection diagrams between the

WM8731 audio chip and FPGA. To control WM8731, the I2C

bus is needed. The module’s ports definitions are as below:

Fig. 14 Audio I2C Module Port Definitions

7

In this case, I2C controller uses 33 clock cycles to transfer

a 24-bit data. The first clock cycle to initialize the controller,

the second and third start transmission, 4
th

-30
th

 cycle transfer

data (which contains 24-bit data and 3 ACK), the last three

cycles are used to stop transmission. Controller uses a 6-bit

counter SD_COUNTER to transfer cycle count.

Before starting the transfer and after the transfer,

I2C_SCLK signal should remain high, the start condition

(START) and termination condition (STOP) being completed

with I2C_SCLK and I2C_SDAT. There is a register SCLK

added to the code to generate START and STOP conditions.

Before START and after STOP, SCLK=0. During data

transmission, I2C_SCLK is provided by the CLOCK.

After synthesizing on Quartus II, the RTL view is as below:

 Fig. 15 Fig. 16

III. INTEGRATED SYSTEM DESIGN

Fig. 17 illustrates the framework of the overall system

design diagram. The system includes the following eight

sections:

 Touchable LCD display

 SDRAM/Flash memory, for program storage and

operation

 Parallel input and output ports (PIO), mainly for testing

and communication with the Nios II processor. Our

design uses the 18 switches, 4 buttons, 18 red LEDs on

DE2-115 demo board.

 Sounds generation module

 Audio codec control, for play corresponding audios

through LINEOUT connected to headphones or

loudspeakers.

 Phase-locked loop (PLL), DE2-115 on 50MHz clock as

input, putting out other clock of different frequency as

the input of other modules. Among, 33MHz as LCD

display clock, 100MHz as the input clock for SDRAM,

18.432MHz as the input clock to audio codec module.

 Nios II processor, as the pivot of the whole system,

complishes the core function, including the touch screen

and data processing.

 JTAG UART, mainly for observation to the results, and

debugging the program.

Fig. 17 Framework of overall system

Fig. 18 System working environment

Fig. 18 shows the overall system operating environment, the

DE2-115 demo board with LCD touch screen and loudspeaker

connected, Quartus II and Nios II IDE programmed, then we

can achieve a multi-instrument playing system including piano,

electronic organ, guitar and Jazz drums.

A. System Hardware Design

Hardware part mainly controls two modules : LCD display

and audio output.

Fig. 19 Hardware system and data flow

In electronic organ module,we use Verilog HDL to describe

the interface and control relative areas to drive pitch frequency

signal.

8

In piano, guitar, and drum module, we use SDRAM to

read the BIN file of the image, and call for SD card to play

audio module with Nios II.

As Fig. 19 shows the output from the PLL clock inputs to

the different frequencies in each module. LCD display

module outputs scan signal to the screen, and outputs the

audio signal to audio module through display module.

B. System Software Design

The design in SOPC Builder mainly contains the

following components:

 Nios II processor, optional full-featured CPU cores

(Nios II/f), with optimal performance;

 SDRAM, CFI Flash, EPCS memory devices;

 PIO, including the buttons, switches and LED lights;

 PLL, to generate different frequency clock as the input

clock of different modules;

 System ID, provide a unique identifier for the SOPC

Builder system ;

 I2C module, generate I2C_SCLK, I2C_SDAT signal;

 Touch module, access to the touch point position and

other data;

 LCD module, can display characters;

 JTAG UART module, to facilitate the observation

results of the proceedings and functional debugging.

After finishing adding the components, click the Generate

button to build SOPC system, generate .sopcinfo files. Then,

Nios II IDE will automatically generate HAL (Hardware

Abstraction Layer) system libraries. HAL system library is a

simplified operating environment, providing simple device

driver interface for underlying hardware communication

program. HAL application programming interface (API) and

ANSIC standard library are integrated. Through HAL API,

we can use the familiar C language function library to access

devices and files.

HAL system library provides the following services:

 Integrated with the new ANSIC standard library,

providing familiar C standard function library;

 Device drivers, providing access to each device in the

system;

 HAL API, providing a consistent and standard

interface;

 System initialization, initializing processor and

operating environment before the main ();

 Device initialization, initializing each device in system

before the main ();

System.h file, providing software description for hardware

(Nios II), is the basis for the HAL system library. The

document describes every peripheral devices in the system,

and the details are as follow:

 Peripheral hardware configuration;

 Base address;

 IRQ priority;

 Peripherals symbolic name
[9]

;

HAL system library as the underlying, based on the principle of

each module and working agreement, creates their own drivers,

including I2C, Multi-touch, LCD driver modules and

application functions, and then develope through main ()

function. The software system structure is shown in Fig. 20.

Fig. 20 Structure of software system

IV. RESULTS AND SHOW

The physical platform for the design is shown in Fig. 21.

Firstly, run Quartus II, analysis and synthesis, after showing the

interface, run Nios II Eclipse/IDE to get software started, thus,

we can achieve the whole program with controllably operating

the system.

Fig. 21 Physical System Platform

A. Electronic Organ Playing System

When SD card inserted and DE2-115 be turned on, choose

mode “Electronic Organ”, and click LOAD, then we will come

to the electronic organ interface, as Fig. 22 shows.

Fig. 22 Electronic Organ Playing Interface

9

When the key is not pressed, the shadow of the black key

at edge remains, represents the 3D effect, and the white key

stays white. The keyboard has an octave, a total of 14 key

tones in all.

When the white key is pressed, it is displayed as shades of

gray, which is showed in Fig. 23;when the black key is

pressed, it is displayed as shadow edge disappearing, which

is showed in Fig. 24. And the corresponding LED lights up.

When the switch SW[1] turns to automatically play mode, it

begins to play demo sound, and the keys will change their

color in time.

Fig. 23 Fig. 24

B. Piano Playing System

The piano module is quite similar to electronic organ’s, for

their interface display is exactly the same. What makes them

differ from each other is that the way to generate their waves

is of no similarity.

The principle of piano playing calls for complex echos and

harmonic waves, which contributes a lot to its unique timbre.

At the top right corner, there is a semi-transparent section

indicating the interface of Jazz drum. When press the section,

the interface will switch into Jazz drum playing mode.

Fig. 25 Piano Playing Interface

C. Guitar Playing System

The guitar interface consists of 8 chords and 6 strings, and

we turned these function objects into touch area on LCD

screen.

Whenever choosing a chord, the strings will be prepared,

and make specific sounds according to the chord. Therefore,

we can achieve a 8-chord guitar playing system.

At the bottom right corner, there is a semi-transparent section

indicating the switch to piano interface.

Fig. 26 Guitar Playing Interface

D. Jazz Drum Playing System

The Jazz Drum Playing system has 4 drums and 4 cymbals

and a bass drum. The way it works is just the same as piano and

guitar. When the semi-transparent guitar at the bottom left

corner pressed, the system will change to the guitar playing

mode.

Fig. 27 Jazz Drum Playing Interface

E. System Resource Utilization

Fig. 28 SOPC Components and Connections

10

Fig. 29 RTL View fot the Entire System

Fig. 30 System Resource Utilization

V. CONCLUSIONS

Hardware design completed on Quartus II 11.0 and

software design developed on Nios II 11.0, combining the

two ALTERA development platform, we have build a system

using SOPC on DE2-115 demo board, and accomplished a

real-time controllable and multi-instrument switchable music

synthesizer.

The proposed simulation algorithm sounds, compared with

the real sounds, still needs to be improved. It is unrealistic to

make the simulate same as the real instrument. The intensity

of the strength, plucked location and the surrounding

environment such as temperature and humidity will affect

subtle changes to the sound, and the data simulated will also

be huge. The further improvement for sound envelope

algorithm will help make progress to the efficiency as

simulating.

Sufficient hardware resources on the platform provide

great convenience for further development. This design can

be developed in many recreational aspects, such as adding

some game elements and cool effects, making it more

interesting, more attractive, and more valuable and

competitive in current electronic markets.

REFERENCES

[1] Bao-zong Yuan，Qiu-qi Ruan，Yan-jiang Wang，etc．Conceptual

Framework Features and Key Technologies for a new generation(the

4th generation) of HCI[J]．Electronic Journal，2003，31(12A)：

1945-1954．

[2] Altera Corporation. DE2-115 User Manual[EB/OL]. Available:

http://www.altera.com/literature/ lit-cyclone-iv.jsp. 2010.1.
[3] Altera Corporation. Video and Embedded Evaluation Kit – Multi-touch

User Manual[EB/OL]. Available: http://www.altera.com/literature/.

2010.1.

[4] MULTEK Corporation. LC-CPT 7inch PS-9928-01 Rev01[M/CD]. 2011,

1.

[5] Wolfson Corporation. WM8731/WM8731L[M/CD]. 2009, 4.
[6] WM8731EDS portable digital audio solutions[EB/OL]. Available:

www.wolfsonmicro.com

[7] Pei-yuan Guo, Mei-hua Qiao. Music Storage and Playback System
Based on FPGA[J]. Beijing Technology and Business University

Academia Journal (Natural Science Edition),2004,(06):18-22,26

[8] Jaffe D A, Smith J O. Extensions of the Karplus-Strong plucked-string
algorithm[J]. Computer Music Journal, 1983, 7(2): 56-69.

[9] Lan-ying Li. SOPC Design Principles and Application for Embedded

Soft-cored Nios [M]. Beijing: Beijing Aerospace University Press, 2006,
11.

