

Design and Implementation of Nios II-based LCD

Touch Panel Application System
Tong Zhang

1
, Wen-Ping Ren

2
, Yi-Dian Yin, and Song-Hai Zhang

School of Information Science and Technology, Yunnan University

No.2, North CuiHu Road, Kunming City, Yunnan Province, China

1
zhangt13@mails.tsinghua.edu.cn

2
rwp3053@sina.com

Abstract— This paper explains a system design for developing

LCD touch panel applications by means of embedded system

approach. Two Avalon-compatible IPs, acting as the

LCD-display controller and the touch panel ADC controller are

designed respectively for Nios II-centered SOPC. To verify the

design, a game software named Lianliankan is developed on a

SOPC containing the two custom IPs. The result indicates that

the design has good usability, and satisfies the demand of

application development better.

Keywords— touch panel; Intellectual Property; Nios II; Avalon;

system-on-a-programmable-chip (SOPC)

I. INTRODUCTION

As a good kind of human-machine interaction interface，
touch panel, especially those with high-resolution and

true-color LCD display are increasingly applied to consumer

electronics and industrial equipment, being embedded into

various embedded systems.

Currently, developments of LCD touch panel based on

FPGA are usually realized in two ways. One is building

display buffer model and touching controller via software

where embedded OS is involved in most cases, such as

Windows CE, Android and Linux. Systems of this kind

support various functions, but may be complicated to

implement and have requirements for hardware. The other

way is using loose HDL to describe each functional module

and putting them together in the top module. This approach

is easy to realize, but hard to apply to practical application

developments.

This design realizes the functioning of LCD touch panel

in the form of IP core as a component of SOPC and

application functions are implemented via software design.

This approach combined with hardware and software

development provides higher resource efficiency, and is

suitable for specified application or ASIC developments.

II. DESIGN FRAMEWORK

LCD touch panel is a conjunction of inner LCD screen

and outer touching screen. The fundamental principle of

LCD display part is horizontal/vertical scanning. The part of

touch panel is an absolute coordinate sensor. The coordinate

of touched point is outputted in the form of analog signal,

which is converted to digital by ADC.

The circuit for driving LCD touch panel includes three

parts, which are

 LCD display circuit, which deals with pixel signal,

horizontal/vertical scanning signal, etc, in parallel form.

 LCD control circuit, which communicates with

built-in LCD driver IC and configuring display function.

 ADC controller circuit, which communicates with

built-in ADC and transmitting configuration words and

digital output, in serial form.

The design and application of above circuit is

implemented in the form of IP core built in SOPC. The

overview of hardware structure is shown in Fig.1 (Only

related parts are shown). The above three parts of circuit are

implemented in two IP cores and they communicate with

CPU and other components via Avalon bus.

FPGA

SOPC

Avalon Bus

Nios II

CPU

SDRAM

controller

CFI-Flash

controller

LCD

display

controller

ADC

controller

Other

component

Other

component

…

SDRAM

LCD

display port

LCD

control port
ADC

Touch

panel

hardware

other peripheral

other peripheral

…
…

Flash

Fig. 1 Overview of hardware structure

The core work is the design of the two IP cores, i.e. the

LCD display controller and the ADC controller. IP is short

for Intellectual Property. The development of IP core

includes two parts. The first is to develop hardware function

logic, which is to design hardware behaviors using HDL.

The second is the development of driver program, in the

form of C language. The entire Nios II application

development model is shown in Fig.2, which is an

embedded C environment from the view of application

program.

2

Application program

C standard lib

HAL API

Device

driver

Device

driver
……

Nios II hardware layer

Fig. 2 Application development model

III. IP AND DRIVER DESIGN FOR LCD DISPLAY

CONTROLLER

According to hardware requirements, this part involves

two tasks. The first is to receive pixel information from

Avalon bus, create display buffer and output pixel to the

correct position on the screen. The second is communicating

with LCD driver IC to configure LCD display. For the latter,

we only need to leave ports in the IP core and use driver

program to transmit configuration words. While the former

needs coordination of hardware logic design and driver

programming.

A. IP Design

1) Functional Structure

The pixel data for LCD display is stored in SDRAM in

the form of pre-build buffer. In order to read and write to

this buffer rapidly, the method of direct memory access, or

DMA, is used via Avalon master port acquiring data from

SDRAM.

As the rate of reading pixel data (Avalon bus frequency,

100MHz) is bigger than LCD pixel clock (33.2MHz), an

FIFO is added between Avalon master port and pixel output.

As long as FIFO is not full, the master port requests the bus

for data and writes data into FIFO. To satisfy this

requirement, the master port functions in pipelined mode,

which means the port doesn’t wait for the end of one

transmission and requires next transmission by specifying a

new address.

An interrupt signal irq is set to configure multi-page

buffer. Every time the master address gets to the end of a

frame, the irq signal goes high and CPU specifies the

starting address of next farme in the ISR of display interrupt.

Avalon slave ports are used to transmit configuration

information, including driver IC configuration words,

starting buffer addresses and so on.

Pixel data from FIFO is outputted after spilt into R, G and

B segments. Sync signals including HD, VD and DEN are

generated by horizontal/vertical count logic and outputted.

The work clock clk and reset signal reset_n come from

Avalon bus. LCD pixel clock lcd_clk_in is inputted form a

PLL module in SOPC. The overview of the entire IP is

shown in Fig.3.

A

v

a

l

o

n

b

u

s

Master

Slave

Conduit

Clock

FIFO

DMA_Counter

Pixel data Pixel data

Pixel address

Starting address

Configuration information

CKWCKR

Column_counter

Row_counter

Horizonal

sync

Vertical

sync

SDR

AM

Pixel data

Interrupt request

Address

Nios

II Configuration

information

clk

reset_n

lcd_clk_in

R[7:0]

G[7:0]

B[7:0]

HD

VD

DEN

LCD_RESET

SCL

SDA

SCEN

Address

Fig. 3 Overview of LCD display controller IP

2) Design of Pixel Output Buffer dcfifo

This part is implemented by instantiating DCFIFO

(Dual-clock FIFO) in Megafunction, whose I/O structure is

shown in Fig.4.

aclr

data[31:0]

wrreq

rdreq

rdclk

wrclk wrusedw[9:0]

q[31:0]

rdempty

DCFIFO

Fig. 4 I/O ports of dcfifo

Data source data of dcfifo is inputted from Avalon master

port and the depth of FIFO is 1024 words, which can satisfy

the need of more than one line’s pixel data (800 words).

Data input clock wrclk is the Avalon bus clock, while data

output clock rdclk is the LCD pixel clock lcd_clk_in.

When horizontal/vertical sync process is in the period of

pixel output, the read request signal rdreq of FIFO is set; as

long as the master port received available data, the write

request signal wrreq of FIFO is set. Such design can

guarantee that this FIFO is in the “almost full” state all the

time.

3) Design of DMA Address counter DMA_COUNTER

This unit acts as the up-counter of DMA address, which is

implemented by instantiating LPM_COUNTER in

Megafunction, whose I/O structure is shown in Fig.5.

aclr

data[29:0]

sload

cnt_en

clock

q[29:0]

DMA_COUNTER

Fig. 5 I/O ports of DMA_COUNTER

As data of one pixel occupies two bits in SDRAM address,

the output signal q of the counter is 2 bits shorter than

system address (32), and q should be zero-filled in LSB

3

before delivered to the bus.

The default value data of the counter is the starting

address of display buffer, and is written in via Avalon master

port. Switches between different pages of buffer are realized

by writing different values to data. Sload is the sync preset

signal, which is set when DMA address comes to the ending

address of a page of buffer.

The key to realizing pipelined transmission is to request

the bus for data continuously. Therefore, the counter’s

enable signal cnt_en is set whenever FIFO is not full and

data is available on the master port.

4) Logic of Horizontal/Vertical Sync and Pixel Output

Counter column_counter and row_counter control the

transition of horizontal sync signal HD, vertical sync signal

VD and display enable signal DEN, which are designed

according to LCD’s time sequencing.

One pixel on the screen occupies 32bits, whose structure

is shown is Fig.6.

0 RED GREEN BLUE

31 23 15 7 0

MSB LSB

Fig. 6 Storage structure of pixel data

Being synchronized by pixel clock, when DEN is high,

output signals R, G and B get the 23th to 15th, 15th to 7th

and 7th to 0th bits in a pixel respectively as the color

components. If DEN is low, the above signals all go to zero.

5) Operations of Slave Ports and Configuration of LCD

Driver IC

Avalon slave ports deal with the access of configuration

information stored in a group of registers representing

resolution, color depth, DMA starting address, etc. The

target register is specified by the slave address.

Particularly, a register serial_control_reg is defined to

control the output of serial signals SDA, SCL and SCEN.

Behaviors of these signals are defined in the driver program.

6) Interrupt Logic

When a sync preset of DMA_COUNTER happens, irq is

set and interrupt request is sent to CPU. At this time, the

stating address of next screen’s buffer can be specified by

program instructions, and the switch between different pages

of buffer is realized.

Interrupt enable is controlled by a bit in a register written

via a slave port, and interrupt flag can also be reset by

clearing another bit in the same register.

B. Driver Program Design

1) Configuration of LCD

We want the driver program to be loaded by Nios II’s

initialization file alt_sys_init.c, so a _INSTANCE macro and

a _INIT macro are respectively defined in the driver

according to the specs of character-mode device.

In the header file, a structure type named video_display is

defined as the programming type of LCD display controller,

whose members includes the base address of controller,

interrupt enable, display buffer pointer, resolution, color

depth, etc.

The configuration function video_display_init is used to

receive display parameters set in the program, initialize new

video_display variables, register display ISR function,

configure multi-page display buffer, export LCD driver IC

parameters and return video_display pointer to be called by

the program.

2) Multi-page Display Buffer and ISR

In some applications, such as video playing, the content

on the screen need to be refreshed fully for the next frame.

To guarantee the supplying of display data, we need to

generate pixel data of several frames in advance so that pixel

signals can be outputted continuously. In such applications,

multi-page display buffer is used.

The approach in this design to implement multi-page

display buffer is that several areas of buffer are set up in the

memory and are labeled continuously. In the display process,

the current page label is specified according to the reading

and writing progress of display content.

When multi-page display buffer is used, the main program

calls the function video_display_buffer_forward in the driver

program to request to write to the next page of buffer in

order to buffer the content of next frames. When display

interrupt is triggered, the program confirms that next page of

buffer is ready and put it out, otherwise the content on the

screen doesn’t change

3) Configuration of LCD Driver IC

The function lcd_config is used to write configuration

words into the driver IC. It outputs serial data SDA and serial

clock SCL by shifting out the configuration word bit by bit.

The word contains information ranging from resolution,

brightness, contrast, to GAMMA correction, etc.

IV. IP AND DRIVER DESIGN FOR ADC CONTROLLER

The process of acquiring coordinates is the process of

analog to digital conversion via ADC. The task for this IP is

to control the process of configuration, capturing, sampling,

converting and outputting in the conversion according to

ADC IC’s time sequencing.

A. IP Design

According to ADC IC’s time sequencing, the workflow of

this IP is as shown in Fig.7.

CS signal is

reset.

One touch is

captured.

Transmit

configuration

word for X

conversion.

Acquire and

store X

coordinate.

Transmit

configuration

word for Y

conversion.

Acquire and

store Y

coordinate.

CS signal is set.

Finish of one

coordinate

conversion

Coordinate values are

delivered to port-

mapped registers.

Interrupt requested.

Waiting

Fig. 7 Flow chart of ADC controller IP

4

From the view of the system, IP sends out coordinate

values and interrupt signals, and receives interrupt reset and

interrupt enable instructions. Actually, only one Avalon slave

port is enough for this IP.

1) Capturing a Touch

To decide the touching point correctly, the falling edge of

PENIRQ_n outputted by ADC need to be captured. Two

registers are set to record the state of PENIRQ_n in the

previous clk and the current clk respectively. The flag for a

touch captured is that PENIRQ_n is high in the previous clk

and low in the current clk.

2) Controlling Time Sequencing

Enough DCLK cycles are needed for the conversion to be

finished. Register conv_ctrl_cnt is the counter for DCLK

number and spi_ctrl_cnt is the counter for working progress.

The operation of writing which bit in a configuration word

or outputting which bit in a digital value is done according

to spi_ctrl_cnt ’s value.

3) Switching between X/Y Conversions

According to ADC hardware specs, different

configuration words need to be written into IC before

different (X or Y) coordinate conversions.

Switches between X/Y conversion are controlled by

register y_coordinate_config whose initial state is 0. After X

conversion is finished y_coordinate_config goes to 1, and

returns to 0 after Y conversion finished.

Registers x_config_reg/y_config_reg record the

configuration word needed by X/Y conversion respectively.

The final word to write into driver IC is stored in register

ctrl_reg, which switches between x_config_reg and

y_config_reg according to the state of y_coordinate_config.

4) Start and Stop Control of Conversion

Internal signal eof_trasmission is the flag of the finish of

one conversion, which is set when y_coordinate_config

returns to 0, meaning that X and Y conversions are both

finished.

Internal signal transmit_en acts as the conversion enable

signal and controls the entry of conversion logic.

Transmit_en is set when the falling edge of PENIRQ_n is

captured, and reset when PENIRQ_n returns to high and

eof_transmission is also high.

5) Reading and Writing Serial Data

Internal signal wr_config_strob acts as the strobe signal

during writing configuration words. When wr_config_strob

is high, bits in ctrl_reg is left shifted out to DIN

synchronized with DCLK and configuration information is

sent out.

Internal signal rd_coord_strob acts as the strobe signal

during outputting digital values. Bits in DOUT are left

shifted into x_coordinate or y_coordinate synchronized with

DCLK according to the state of y_coordinate_config and

afterwards the converted coordinates are acquired.

The setting and preseting of wr_config_strob and

rd_coord_strob are controlled by conv_ctrl_cnt mentioned

above and further determined by ADC time sequencing.

6) Interrupt Logic and Operations of Slave Ports

When eof_trasmission goes to high and the value of

y_coordinate is nonzero, a valid touching point is acquired,

and meanwhile the interrupt flag touch_irq is set.

Via specifying different slave addresses, related registers

are read or written, and X/Y coordinates, interrupt flag and

interrupt enable are accessed.

B. Driver Program Design

Similar to LCD display controller, _INSTANCE macro

and _INIT macro are respectively defined in the driver

program of ADC controller for auto-calling in initialization.

Particularly, program statements for disabling touch

interrupt are added in _INIT macro, avoiding the interrupt is

triggered before touch function is started.

Similarly, structure type touch is defined to be used by

touch function, whose members include the base address of

ADC controller, current X/Y coordinates, interrupt flag, etc.

The configuration function touch_control_init is used to

initialize new variables of touch type and determine whether

to enable the interrupt or not. When the interrupt is disabled,

touch function can work in query mode.

The ISR of touch interrupt is not defined in driver

program, which should be defined in the main program

according to different applications.

V. IMPLEMENTATION, TEST AND CONCLUSION

Build an SOPC containing the above custom IPs, whose

component list is shown in Fig.8. The subsequent tests are

based on this platform.

Fig. 8 SOPC component list

To check the actual performance of the entire design in

practical application, a game named Lianliankan is

programmed and run on the SOPC above. The whole design

of software and hardware is downloaded to DE2-115 board

to be tested. A screenshot during test is shown in Fig.9.

Fig. 9 A screenshot of application implementation

The test confirms that, pixels on the LCD screen locate

precisely, colors are accurate, and characters display

correctly. The touch coordinates are well detected. Interrupts

5

can be triggered as expected. The touch panel responds well

to touches and never a touch is left out or captured

repeatedly. Driver programs function well. The logic of

Lianliankan shows no error and games can be finished

successfully.

The result shows that this design comes up to expectation

and possesses availability. It can be used by various

developments of different levels, containing LCD touch

panels.

REFERENCES

[1] Altera Corporation, AN527: LCD Controller,

www.altera.com/literature/an/an527.pdf‎, 2008.

[2] Toppoly Optoelectronics Corporation, LTPS LCD Specification

(TD043MTEA1), TRDB-LTM CDROM, 2006.

[3] Toppoly Optoelectronics Corporation, LTPG110 Preliminary

Datasheet, TRDB-LTM CDROM, 2006.

[4] Analog Devices Corporation, Touch Screen Digitizer AD7843,

TRDB-LTM CDROM, 2004.

[5] Altera Corporation, Embedded Peripherals IP User Guide,

www.altera.com/literature/ug/ug_embedded_ip.pdf., 2011.

[6] Altera Corporation, Nios II Software Developer's Handbook, ver 11.0,

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf‎, 2011.

[7] Altera Corporation, Quartus II Handbook, Version 10.1,

www.altera.com/literature/hb/qts/.../quartusii_handbook_10.1.0.pdf‎,

2010.

