

 Modified Visual Target Tracking Algorithm and Its

 FPGA Implementation
 Zhi-Ying Du

1
, Shu-Hui Wang

2
, and Dong-Bin Pei

3

 School of Communication and Information Engineering, Shanghai University

 No.99, Shangda Road, Shanghai, China 200072
1
duzhiying@live.com

2
wongshgogo@gmail.com

3
dongbinpei@126.com

Abstract— Visual target tracking is the key problem in intelligent

video processing. CamShift and Particle Filtering are classic and

effective in visual target tracking algorithms, but they both need

to analyse a large amount of probability statistic, leading to high

algorithm complexity and low calculation efficiency. FPGA

provides a competitive alternative for hardware acceleration to

these applications. In this paper, we modify CamShift and

Particle Filtering algorithms and propose a FPGA-based

hardware accelerating architecture. Experiments show the

embedded architectures have good performance and the Particle

Filtering algorithm shows better robustness and real-time

performance.

Keywords— target tracking; CamShift; Particle Filtering;

FPGA; embedded system

I. INTRODUCTION

Visual target tracking is the key problem in intelligent

video processing applications. It is related to the image

processing and pattern recognition. In military, precision

guided system [1] uses the accurate tracking technique to get

target location. In transportation, intelligent transportation

system [2] can analyse the traffic flow statistics and anomaly

detection by tracking cars. In security, the intelligent

monitoring system [3] will raise the alarm if the image

captured by camera is anomalous.

Target tracking was proposed firstly by Wax in 1955.

CamShift and Particle Filtering are two widely used

algorithms in many target tracking techniques because of their

excellent performance in real time and robustness.

Bradski proposed the CamShift algorithm [7-10] on basis

of MeanShift algorithm [4-6]. CamShift algorithm is

characterized by color histogram, analyses the dynamic

probability statistics of the features frame by frame and

changes the search box adaptively. Therefore, CamShift

algorithm is also called self-adaption MeanShift algorithm.

Particle Filtering algorithm [11-12] is based on Bayesian

estimation and Monte Carlo method, and it is suitable for the

non-linear and non-Gaussian systems presented by any state

space model that is approximate to the optimal estimation [16].

It is a great improvement to Kalman Filtering algorithm [13-

15].

CamShift and Particle Filtering are well developed on PC.

PC shows powerful computing performance, but it has great

disadvantage of large size, high cost and power consumption.

Compared to PC systems, embedded systems are less

powerful in storage space and computing capability, but they

are flexible and less consuming. Considering the cost,

embedded system is a better choice for target tracking

algorithm implementation.

Lots of researchers use DSP, ARM or FPGA to implement

target tracking algorithm. Pan Lian [17] proposed a pedestrian

tracking system on ARM. Li Yanbin [18] modified Particle

Filtering on DSP. Deng Minxi [19] built a real-time target

tracking system on DSP. Saeed Ahsan [20] used the parallel

structure of FPGA to track the moving objects and proposed

the FPGA-based real-time target tracking on a mobile

platform. Jung [21] used the adaptive color histograms to

implement the FPGA-based real-time target tracking system.

Compared to PC, ARM and DSP, FPGA has a great

performance in parallel structure. If there are 100 particles

need to be computed, PC will cost plenty of time due to the

serial processing pattern. FPGA processes the 100 particles in

parallelism and shorten the computing time.

DE2-115 board provides Cyclone IV with enough logic

elements and multiplying units, and peripheral units to satisfy

the Multimedia IC designs. This paper proposes FPGA-based

hardware architecture of CamShift and Particle Filtering

algorithms.

II. VISUAL TARGET TRACKING ALGORITHMS

A. CamShift Algorithm

To analyse the continuous dynamic color histograms is the

key process of CamShift algorithm. From the histograms, we

judge the location of the target. CamShift shows a strong

robustness and real-time performance. The algorithm flow

chart is shown in Fig.1.

1) Set the tracking object and search box; initialize the

procedure.

2) Count the color probability of the target box and

generate the color histogram. Compared with RGB color

space, HSV color space is less sensitive to the light. We

extract the H-component to analyse the color statistics to

2

weaken the light influence on tracking effect and simplify the

computing.

3) Back project the color histogram to the image. Color of

the target values more than the background.

4) Compute the zeroth moment and first moment and get

the centroid position of the search box. Set),(yx as the pixel

position of the search box and),(yxI as the back projection

of),(yx . Define the zeroth moment 00M and first

moment 01M , 10M as follows:

),(00 yxIM
yx

 (1)

),(01 yxyIM
yx

 (2)

),(10 yxxIM
yx

 (3)

Choose the initial window

Select the target box and

search box

Output the centroid position

to adjust the target box and

search box

Compute the color

histogram of the target

box

Back projection

Compute the centroid

position of the target box

Adjust the window to the

centroid position

Convergent?
Y N

Fig. 1 Flow chart of CamShift algorithm

The centroid position of the search box:











00

01

00

10 ,),(
M

M

M

M
yx kk (4)

5) Adjust the window to the centroid position and judge the

convergence. If it is convergent, output the centroid position,

adjust the target box and search box and track the next frame.

B. Particle Filtering Algorithm

Particle Filtering is an optimal algorithm based on Bayesian

estimation and Monte Carlo method. It uses sequential process

to measure data by recursive fashion, so it is unnecessary to

store and process the previous data and saves storage space.

The algorithm flow chart is shown in Fig.2.

The steps of the Particle Filtering are shown as follows:

1) Initialization: 0t

Collect the particle set {
)(

0
ix , Ni ,...,2,1 } from the

prior distribution)(0xp .

2) If 1t ,
N

1i
(i)

1-t
(i)

1-t }w,{x  is the particle set from

posteriori distribution at the 1t moment.

Observed value

Use the observed model

to compute the weight

Resample

Refresh the particles

Output the sample with

the maximal weight

Initialization

Compute the target

histogram and

sample the particles

Fig. 2 Flow chart of Particle Filtering algorithm

Importance sample:

Sample the particles),|(~)(
1

)(~)(~

t
i

t

i

t

i

t yxxIx  from the

importance distribution),|()(
1 t

i
tt yxxI  .

At the moment ty
, compute the weight of the

particle
N
i

i

tx 1

)(~

}{  :

),|(

)|()|(
)(

1

~)(~

)(

1

~)(~)(~

)(
1

)(

t

i

t

i

t

i

t

i

t

i

tti
t

i
t

yxxI

xxpxyp
ww





 (5)

Normalize the particle weight:





N

i

j
t

i
t

i

t

w

w
w

1

)(

)()(~

 (6)

3) Resample
2

1

)(~^

)(



N

i

i

teff wN (7)

If theff NN 
^

，then define the resample particle as

N
i

i
t

N
x 1

)(}
1

,{  (8)

If theff NN 
^

，then define the resample particle as

N
i

i

t

i

t
N
i

i
t

i
t wxwx 1

)(~)(~

1
)()(},{},{   (9)

3

4) Output the particle set },...,2,1:{)(
:0 Nix i
t 

Posteriori probability:

)(
1

)|()|(:0
1

:1:

^

:1:0)(
:0

t

N

i
xttott dx

N
yxpyxp i

t



  (10)

State approximation: 



N

i

i
t

i

tt xwx
1

)(
)(~^

According to the law of large numbers, define the

expectation of the function)(:0 tt xg as





N

i

i
tttttttt xg

N
yxpxgxgE

1

)(
:0:1:0:0:0)(

1
)|()())(((11)

At the moment of 1t , the posteriori probability

)|(2:11  tt yxp of the target state variable is represented by

approximate particle set },...,2,1:{
)(

1

~

Nix
i

t  . The weight of

the particles is N/1 . Compute the weight

)(

1

~ i

tw  of the

particle

)(

1

~ i

tx  . The particles with high accuracy have high

weight, while those with big error have low weight. Then, we

get the particle set
N
i

i

t

i

t wx 1

)(

1

~)(

1

~

},{  . Particles with high weight

will derive more particles than those with low weight. The

derived particles show uniform distribution as well. Therefore,

we get the particle set
N
i

i

t Nx 1

)(

1

~

}/1,{  to predict next particle

set
N
i

i

t Nx 1

)(~

}/1,{  .

III. THE IMPLEMENTATION ARCHITECTURE OF THE VISUAL

TARGET TRACKING ALGORITHMS

We use the DE2-115 board, camera, VGA display and IR

remote controller, and propose the hardware accelerating

architecture of CamShift and Particle Filtering algorithms on

FPGA.

A. Hardware Implementation of CamShift Algorithm

Combining CamShift with FPGA features, the module

partition of the hardware architecture is shown in Fig.3.

CamShift includes RGB to HSV, median filtering and

CamShift implementation. CamShift implementation consists

of selecting the initial target, color histogram statistics, back

projection, computing the zeoroth and first moment,

outputting the centroid and displaying the tracking box.

Because of the low complexity, CamShift is easy to

implement on FPGA. The performance of FPGA

implementation of CamShift will be analysed in the next

Chapter.

1) RGB to HSV: As mentioned in the previous chapter,

HSV color space is little sensitive to the light. To simplify the

computation, we extract the H-component to count the color

histogram. As shown in Fig.4, RGB to H-component needs

division, while FPGA doesn’t support it directly, so we use

the divider in Quartus II. Each division occupies more than

one pixel clocks. It leads to the FPGA timing problem. Hence,

we use the flow line to solve this problem. Delay two pixel

clocks at the output terminal and output the H-component at

each beat.

Select the initial target

RGB to HSV

Median filtering

Display the tracking box

Color histogram

statistics

Back projection

Compute the zeroth and

first moment

Output the centroid

 Fig. 3 Module partition of CamShift hardware architecture

Compute the

max and min of

RBG
S=(MAX-MIN)/MAXV=MAX

Max=R?

H=128*(G-B)/(MAX-

MIN)
Max=G?

H=256+128*(B-R)/(MAX-

MIN)

H=512+128*(R-G)/(MAX-

MIN)

Y N

N
Y

Fig. 4 RGB to HSV

4

2) Median Filtering: The H-component image is denoised

smoothly by median filtering. Output to the input port of the

CamShift module.

3) CamShift Algorithm: This module consists of

initialization, color histogram statistics, back projection,

computing zeroth and first moment, calculating the centroid

and displaying the tracking box.

Initialization: Select a target and put the target into the

target box.

Color histogram statistics: Put the color histogram of the

first frame into RAM. Each frame will be compared with the

first frame by searching the color histogram in the RAM in

order to judge whether this pixel is the target pixel.

Back projection: The target weights more, non-target

weights less. Back projection will help us to locate the target

position.

Compute the zeroth and first moment: We use the formulas

mentioned in the previous Chapter to compute zeroth and first

moment. We use the multipliers in Quartus II to do

multiplication.

Output the centroid: We use the formulas mentioned in the

previous Chapter to compute the centroid. We use the dividers

in Quartus II to do division as well.

Display the tracking box: Set the centroid as the geometric

centre of the tracking box and display the tracking box.

We use state machine to implement the controlling and

state transition of each sub module. State machine overcomes

the inflexible controlling of the pure digital hardware

architecture and makes the timing and logic more accurate.

The clear structure contributes to debugging and modification.

B. Hardware Implementation of Particle Filtering Algorithm

Combining Particle Filtering with FPGA features, the

module partition of the hardware architecture is shown in

Fig.5. It includes initialization, target selection, color

histogram statistics of the target and each particle, particle

weight computation, target capture, resampling and RAM. We

use the initialization to clear RAM. Then, set the size and

location of the target. The display module is to output the

original image and computing result.

1) Feature Model of Particle Filtering: We choose the H-

component histogram as the feature model to track the target,

shown in Fig.4.

2) Color Histogram Statistics of the Target: If the input

image is the first frame, this system generates the color

histogram and prepares for the weight computing.

We use the H-component as the RAM address to do read-

write operation. The read data equals the written data adding

one.

3) Color Histogram Statistics of Each Particle: Particle

Filtering computes the posteriori probability distribution of

the target state variables by a series of random particles. We

use the method shown in Fig.6 to produce random

particles),(yx .

Given the coordinate of each particle, we use the method

mentioned in the previous section to get the color histogram of

each particle.

4) Compute the weight of the particles: Computing the

weight of the particles is the key to Particle Filtering,

involving lots of multiplication, division, radication and

superposition. We can take advantage of the FPGA parallel

structure to compute the weight of each particle in parallelism,

but we still need compute enough particles to have a great

experimental effect. In this paper, we use 128 particles, so it

costs lots of hardware consumption. Considering the slot time

between each frame, we use the time multiplexing to compute

the weight of the particles, as shown in Fig.7.

Select a target

RAM

The fist frame?

color

histogram of

1st frame

Y

Color histogram of

each particles

Compute the particle

weight

N

Target capture

End tracking?

N

Start

Initialize

Display the image

Resample

End

Y

Fig. 5 Module partition of Particle Filtering hardware architecture

5

+

Random number

generator

X_in X_out

+

Random number

generator

Y_in Y_out

Fig. 6 Particles generator

5) Target Capture: After getting the weight of each particle,

we sort them and get the particle with the biggest weight.

Choose the particle ordinate as the target ordinate.

6) Resample: Particles are random in the Particle Filtering.

Particles with small weight contribute little, but they lead to

severe degeneracy. Resampling deletes the particles with

small weight and replaces them with large weighted particles.

The weight of

No.1-16

particles

Moment 1

The weight of

No.17-32

particles

Moment 2

…

…

The weight of

No.113-128

particles

Moment 8

Output the

weight

Fig.7 Compute the weight of the particles

7) RAM: We use the RAM on FPGA to store the color

histograms of the target and each particle.

IV. EXPERIMENTAL RESULTS

Fig.8 FPGA-based visual target tracking system

As shown in Fig.8, we use the multimedia circuits design

resources on the DE2-115 to build this FPGA-based target

tracking system. The camera is to collect the video signal. We

use the digital-to-analog conversion, Cyclone IV and SDRAM

to process the video signal and implement the CamShift and

Particle Filtering algorithms. The display is to output the

processed video signal. The left part of the display is

experimental results of CamShift algorithm and the right part

is Particle Filtering algorithm.

A. Qualitative Experimental Results

1) In a simple scenario

In a simple scenario, we set the human face as the target.

The experimental effect is shown in Fig.9. First, we select a

target and initialize the system. From the 111
th

, 188
th

 and

272
nd

 frames, CamShift and Particle Filtering algorithms both

meet the demand of target tracking. Observe the 188
th

 and

272
nd

 frames carefully. CamShift can track the target but the

tracking box shifts partially. Particle Filtering still has a great

performance in a simple scenario.

 CamShift Particle Filter

Target Selection

 CamShift Particle Filter

111th Frame

 CamShift Particle Filter

188th Frame

 CamShift Particle Filter

272nd Frame
Fig.9 Target tracking effect in a simple scenario

2) In a complex scenario

In a colorful and complex scenario, the tracking effect of

CamShift and Particle Filtering algorithms are shown in

Fig.10. Both algorithms choose the color as their features, so

colorful scenario causes the interference to target tracking.

Experiment shows CamShift and Particle Filtering are still

effective in complex scenario, but the shift extent of CamShift

is more serious than Particle Filtering.

 CamShift Particle FilterTarget Selection

 CamShift Particle Filter

Target Selection

 CamShift Particle Filter

88th Frame

 CamShift Particle Filter

228th Frame

 CamShift Particle Filter

368th Frame
Fig.10 Target tracking effect in a complex scenario

6

3) With a complex target

As shown in Fig.11, we hold two toys in hand as the target

and compare the performance of both algorithms. From the

123
rd

, 272
nd

 and 340
th
 frames, CamShift loses the target, while

Particle Filtering can track the target accurately. When we

track the target with only one color, CamShift shows a great

performance. If the target includes complex color information,

the tracking effect is poor. However, Particle Filtering still

shows a strong performance with a complex target.

4) In a dark scenario

Light is an important factor in image processing. The

tracking effect in a dark scenario is shown in Fig.12. From

72
nd

frame, CamShift loses the target. In the followed frames,

it still loses the target. When the target is close to the tracking

box, it can continue tracking, but the shift extent is serious,

shown in 130
th

frame. From the 263
rd

 frame, it loses the target

again. Particle Filtering still works in a dark scenario.

Experiment approves that light has a great influence on the

CamShift, but Particle Filtering is still robust.

 CamShift Particle Filter

Target Selection

 CamShift Particle Filter

123rd Frame

 CamShift Particle Filter

272nd Frame

 CamShift Particle Filter

340th Frame
Fig.11 Target tracking effect with a complex target

 CamShift Particle Filter

Target Selection

 CamShift Particle Filter

72nd Frame

 CamShift Particle Filter

130th Frame

 CamShift Particle Filter

263rd Frame

Fig.12 Target tracking effect in a dark scenario

5) With an obstruction

In practical application, if a car is waiting during the red

light and a man is crossing the road, the man will occlude the

car. Therefore, we need the algorithm to be anti-occluded. As

shown in Fig.13, from 296
th

 frame, CamShift loses the target,

while Particle Filtering still has a great performance.

6) Velocity of target

A good algorithm should still be effective, when the target

moves fast. As shown in Fig.14, from the 128
th

, 238
th

 and

332
nd

 frames, when the target moves at 20 pixels/frame, both

algorithms can track the target. From 458
th

, 470
th

, 483
rd

 and

492
nd

 frames, when the target moves at 40 pixels/frame,

CamShift loses the target. From 458
th

 frame to 470
th

 frame,

the tracking box of the CamShift shifts to the target slowly.

When the target moves fast and goes through the tracking box,

CamShift is effective again. From the 483
rd

 frame to the 492
nd

frame, the tracking box does not change the position.

Experiment shows the refreshing of CamShift is slow, while

Particle Filtering has a better real-time performance.

Target Selection 198th Frame

253rd Frame 296th Frame
Fig.13 Target tracking effect with an obstruction

7

 CamShift Particle Filter

238th Frame

 CamShift Particle Filter

332nd Frame

 CamShift Particle Filter

458th Frame

 CamShift Particle Filter

470th Frame

 CamShift Particle Filter

483rd Frame

 CamShift Particle Filter

492nd Frame

 CamShift Particle Filter

Target Selection
 CamShift Particle Filter

128th Frame

Fig.14 Impact of velocity on the target tracking

7) With different particles

As shown in Fig.15, from the 775
th

 and 823
rd

 frames in

Fig.15(a), Particle Filtering with 16 particles has a poor

tracking performance. If the particles increase to 64 particles,

the accuracy of the tracking effect improves obviously.

Experiment shows the number of particles has a great

influence on Particle Filtering. If we compute more particles,

the tracking effect will be better.

Target Selection 140th Frame

775th Frame 823rd Frame

(a) Target tracking effect of 16 particles

Target Selection 93rd Frame

175th Frame 442nd Frame

(b) Target tracking effect of 64 particles

Fig.15 Target tracking effect with different particle numbers

B. Quantitative Experimental Results

1) Influence of particle numbers on the operation time

Table 1 shows the operation time to compute one frame

with different particle numbers. It will cost a long time if we

have too many particles to compute on PC, while FPGA costs

the same time with different particle numbers. With the

increasing of the particle numbers, PC will compute them one

by one. However, with the help of FPGA parallel structure,

Particle Filtering can compute all particles in parallelism.

Experiment shows compared to PC systems, the operation

time has been largely accelerated by the hardware architecture.

When we have a large number of particles to be computed,

this advantage will be obvious.

8

TABLE I
OPERATION TIME OF PARTICLE FILTERING ALGORITHM ON PC AND FPGA

Particles

 numbers

PC

operation time(s)

FPGA

operation time(s)

8 0.0191 0.0167

16 0.0342 0.0167

32 0.0493 0.0167

64 0.1029 0.0167

128 0.1920 0.0167

TABLE II
RESOURCE CONSUMPTION OF FPGA

Resource

Consumption
Available

CamShift

Used

Particle

Filter

Used

Combinational

LE with no register 114,480

5,703

(4.98%)

46,948

(41.01%)

Sequential LE
114,480

2,832

(2.47%)

6,479

(5.66%)

Combinational

LE with a register 114,480

4,245

(3.71%)

15,603

(13.63%)

Dedicated logic

registers 114,480

7,077

(6.18%)

22,082

(19.29%)

LABs
7,155

948

(13.25%)

5,654

(79.02%)

M9Ks
432

36

(8.33%)

241

(55.79%)

Block memory

bits 3,981,312

243,834

(6.12%)

1,571,413

(39.47%)

Embedded

Multiplier 9-bit

elements
532

22

(4.14%)

58

(10.90%)

PLLs
4

1

(25%)

1

(25%)

2) Power dissipation and resource consumption of FPGA

As shown in table 2 and table 3, Particle Filtering has large

power dissipation and consumes many resources. From the

qualitative experiments, the performance of the CamShift is

not as good as Particle Filtering. Experiments show CamShift

and Particle Filtering algorithms have their own advantages on

different conditions. If the power dissipation is limited,

CamShift is a better choice. If we have a demand on accurate

tracking, Particle Filtering is an efficient and reliable target

tracking algorithm.

TABLE III
POWER DISSIPATION OF FPGA

Sort

CamShift

Dissipation

(mW)

Particle Filter

Dissipation

(mW)

Total thermal

power dissipation 381.51 585.47

Core dynamic

thermal power

dissipation
87.07 267.73

Core static thermal

power dissipation 103.27 108.44

I/O power

dissipation 191.18 209.10

V. CONCLUSION

In this paper, we propose a FPGA-based hardware

architecture on basis of CamShift and Particle Filtering.

Experiments show the proposed system can meet the target

tracking demands. On the condition of complex target, dark

scenario and fast movement, Particle Filtering has more robust

anti-jamming capability. The performance of Particle Filtering

can be improved by increasing particles. The FPGA parallel

structure can improve the real time performance of Particle

Filtering algorithm. Particle Filtering has a great performance

at the cost of resource consumption. On condition of limited

resource, CamShift algorithm is a better choice. FPGA

parallelism processing largely accelerates the operation time.

Experiments show the proposed hardware accelerating

architecture has a great performance.

REFERENCES

[1] Xiujuan Yao, Xiaole Peng, Yongke Chung. Precise guidance
techniques [J]. Laser and Infrared. 2006,36(5):338-340

[2] Betke M., Haritaoglu E., Davis L.S. Real-time vision system for

automatic traffic monitoring[J]. Image and Vision Computing.
2000,18(10):781-794

[3] Mohamed F. A., Rama C., Zheng Q. Integrated motion detection and

tracking for visual surveillance[A]. Proceeding of the Fourth IEEE
International Conference on Computer Vision System[C]. New York:

IEEE, 2006:28

[4] Fukunage K and L.D.Hostetler. The estimation of the gradient of a
density function with application in pattern recognition[J]. Information

Theory. 1975,21(1):32-40
[5] Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid

Objects using Mean Shift[J]. Computer Vision and Pattern Recognition.

2000,2:142-149

[6] Yizong Cheng. Meanshift, mode seeking, and clustering[J]. Pattern

Analysis and Machine Intelligence. 1995,17(8):790-799.

[7] Bradski, G.R. Real time face and object tracking as a component of a
perceptual user interface[A]. Applications of Computer Vision[C] 1998:

214-219

9

[8] Collins R T, LIU Yan-Xi. On-Line selection of discriminative tracking
features[J]. IEEE Transactions on Pattern Analysis and Machine

Intelligence. 2005,27(10): 1631-1643.

[9] Allen J G, Richard Y D and Jin J S. Object tracking using CamShift

algorithm and multiple quantized feature spaces[A] Pan-Sydney Area

Workshop on Visual Information Processing [C]. Australian: Sydney.

2003: 1-5.
[10] Zhou S K, Chellappa R, Moghaddam B. Visual tracking and

recognition using appearance-adaptive models in particle

filters[J].IEEE Transactions on Image Processing. 2004,13(11):1491-
1506.

[11] Arulampalam M S, Maskell S, and Gordon N. A tutorial on particle

filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE
Transactions on Signal Processing. 2002,50(2): 174-188.

[12] Doucet A, Gordon N J, Krishnamurthy V. Particle filters for state

estimation of jump Markov linear systems[J]. IEEE Transactions on
Signal Processing. 2001, 49(3): 613-624.

[13] R.E.Kalman. A New Approach to Linear Filtering and Prediction

Problems[J]. Transactions of the ASME--Journal of Basic Engineering.
1960, 82(D):35-45

[14] S. Julier, J. K. Uhlmann, H. F. Durrant-Whyte. A New Method for the

Nonlinear Transformation of Means and Covariances in Filters and
Estimators[J]. IEEE Transactions on Automatic Control. 2000, 45(3):

477-482

[15] R. P. Wishner, J. A. Tabaczynski, M. Athans. A Comparison of Three

Non- linear Filters[J]. Automatica. 1969,5(5):487-496

[16] D. Crisan and A.Doucet. A Survey of convergence results on particle

filtering methods for practitioners [J]. IEEE Trans. Speech and Audio
Proc., 2002,10(3): 173-185

[17] Pan Lian, and Liu Xiaoming. The study of target tracking based on

ARM embedded platform[J]. Journal of Computers, 2012, 7(8): 2015-
2023

[18] Li Yan-Bin, Cao Zuo-Liang, Liu Chang-Jie. Particle filter algorithm

for target tracking based on DSP[J]. Journal of Optoelectronics Laser,
2009, 20(6): 771-774

[19] Deng Minxi, Guan Qing, Xu Sheng. Intelligent video target tracking

system based on DSP[A]. International Conference on Computational
Problem-Solving[C], 2010

[20] Saeed, Ahsan, Amin, Adeel, Saleem, Shehzad. FPGA based real-time
target tracking on a mobile platform[A]. International Conference on

Computational Intelligence and Communication Networks[C], 2010

[21] Jung Uk Cho, Seung, Hun Jin, Xuan, Dai Pham. FPGA-based real-
time visual tracking system using adaptive color histograms[A].

International Conference on Robotics and Biomimetics[C], 2007.

