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Abstract— Visual target tracking is the key problem in intelligent 

video processing. CamShift and Particle Filtering are classic and 

effective in visual target tracking algorithms, but they both need 

to analyse a large amount of probability statistic, leading to high 

algorithm complexity and low calculation efficiency. FPGA 

provides a competitive alternative for hardware acceleration to 

these applications. In this paper, we modify CamShift and 

Particle Filtering algorithms and propose a FPGA-based 

hardware accelerating architecture. Experiments show the 

embedded architectures have good performance and the Particle 

Filtering algorithm shows better robustness and real-time 

performance. 
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I. INTRODUCTION 

Visual target tracking is the key problem in intelligent 

video processing applications. It is related to the image 

processing and pattern recognition. In military, precision 

guided system [1] uses the accurate tracking technique to get 

target location. In transportation, intelligent transportation 

system [2] can analyse the traffic flow statistics and anomaly 

detection by tracking cars. In security, the intelligent 

monitoring system [3] will raise the alarm if the image 

captured by camera is anomalous. 

Target tracking was proposed firstly by Wax in 1955. 

CamShift and Particle Filtering are two widely used 

algorithms in many target tracking techniques because of their 

excellent performance in real time and robustness. 

Bradski proposed the CamShift algorithm [7-10] on basis 

of MeanShift algorithm [4-6]. CamShift algorithm is 

characterized by color histogram, analyses the dynamic 

probability statistics of the features frame by frame and 

changes the search box adaptively. Therefore, CamShift 

algorithm is also called self-adaption MeanShift algorithm. 

Particle Filtering algorithm [11-12] is based on Bayesian 

estimation and Monte Carlo method, and it is suitable for the 

non-linear and non-Gaussian systems presented by any state 

space model that is approximate to the optimal estimation [16]. 

It is a great improvement to Kalman Filtering algorithm [13-

15]. 

CamShift and Particle Filtering are well developed on PC. 

PC shows powerful computing performance, but it has great 

disadvantage of large size, high cost and power consumption. 

Compared to PC systems, embedded systems are less 

powerful in storage space and computing capability, but they 

are flexible and less consuming. Considering the cost, 

embedded system is a better choice for target tracking 

algorithm implementation. 

Lots of researchers use DSP, ARM or FPGA to implement 

target tracking algorithm. Pan Lian [17] proposed a pedestrian 

tracking system on ARM. Li Yanbin [18] modified Particle 

Filtering on DSP. Deng Minxi [19] built a real-time target 

tracking system on DSP. Saeed Ahsan [20] used the parallel 

structure of FPGA to track the moving objects and proposed 

the FPGA-based real-time target tracking on a mobile 

platform. Jung [21] used the adaptive color histograms to 

implement the FPGA-based real-time target tracking system. 

Compared to PC, ARM and DSP, FPGA has a great 

performance in parallel structure. If there are 100 particles 

need to be computed, PC will cost plenty of time due to the 

serial processing pattern. FPGA processes the 100 particles in 

parallelism and shorten the computing time. 

DE2-115 board provides Cyclone IV with enough logic 

elements and multiplying units, and peripheral units to satisfy 

the Multimedia IC designs. This paper proposes FPGA-based 

hardware architecture of CamShift and Particle Filtering 

algorithms. 

II. VISUAL TARGET TRACKING ALGORITHMS 

A. CamShift Algorithm 

To analyse the continuous dynamic color histograms is the 

key process of CamShift algorithm. From the histograms, we 

judge the location of the target. CamShift shows a strong 

robustness and real-time performance. The algorithm flow 

chart is shown in Fig.1. 

1) Set the tracking object and search box; initialize the 

procedure. 

2) Count the color probability of the target box and 

generate the color histogram. Compared with RGB color 

space, HSV color space is less sensitive to the light. We 

extract the H-component to analyse the color statistics to 
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weaken the light influence on tracking effect and simplify the 

computing. 

3) Back project the color histogram to the image. Color of 

the target values more than the background. 

4) Compute the zeroth moment and first moment and get 

the centroid position of the search box. Set ),( yx  as the pixel 

position of the search box and ),( yxI  as the back projection 

of ),( yx . Define the zeroth moment 00M  and first 

moment 01M , 10M  as follows: 
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Fig. 1  Flow chart of CamShift algorithm 
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5) Adjust the window to the centroid position and judge the 

convergence. If it is convergent, output the centroid position, 

adjust the target box and search box and track the next frame. 

B. Particle Filtering Algorithm 

Particle Filtering is an optimal algorithm based on Bayesian 

estimation and Monte Carlo method. It uses sequential process 

to measure data by recursive fashion, so it is unnecessary to 

store and process the previous data and saves storage space. 

The algorithm flow chart is shown in Fig.2. 

The steps of the Particle Filtering are shown as follows: 

1) Initialization: 0t  

Collect the particle set {
)(

0
ix , Ni ,...,2,1 } from the 

prior distribution )( 0xp .  

2) If 1t , 
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posteriori distribution at the 1t  moment. 
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Fig. 2 Flow chart of Particle Filtering algorithm 
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Normalize the particle weight: 
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4) Output the particle set },...,2,1:{ )(
:0 Nix i
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According to the law of large numbers, define the 

expectation of the function )( :0 tt xg as 
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At the moment of 1t , the posteriori probability 

)|( 2:11  tt yxp of the target state variable is represented by 

approximate particle set },...,2,1:{
)(
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the particles is N/1 . Compute the weight 
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III. THE IMPLEMENTATION ARCHITECTURE OF THE VISUAL 

TARGET TRACKING ALGORITHMS 

We use the DE2-115 board, camera, VGA display and IR 

remote controller, and propose the hardware accelerating 

architecture of CamShift and Particle Filtering algorithms on 

FPGA. 

A. Hardware Implementation of CamShift Algorithm 

Combining CamShift with FPGA features, the module 

partition of the hardware architecture is shown in Fig.3. 

CamShift includes RGB to HSV, median filtering and 

CamShift implementation. CamShift implementation consists 

of selecting the initial target, color histogram statistics, back 

projection, computing the zeoroth and first moment, 

outputting the centroid and displaying the tracking box. 

Because of the low complexity, CamShift is easy to 

implement on FPGA. The performance of FPGA 

implementation of CamShift will be analysed in the next 

Chapter. 

1)  RGB to HSV: As mentioned in the previous chapter, 

HSV color space is little sensitive to the light. To simplify the 

computation, we extract the H-component to count the color 

histogram. As shown in Fig.4, RGB to H-component needs 

division, while FPGA doesn’t support it directly, so we use 

the divider in Quartus II. Each division occupies more than 

one pixel clocks. It leads to the FPGA timing problem. Hence, 

we use the flow line to solve this problem. Delay two pixel 

clocks at the output terminal and output the H-component at 

each beat. 

Select the initial target

RGB to HSV

Median filtering

Display the tracking box

Color histogram

statistics

Back projection

Compute the zeroth and 

first moment

Output the centroid

 Fig. 3 Module partition of CamShift hardware architecture 
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Fig. 4 RGB to HSV 
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2)  Median Filtering: The H-component image is denoised 

smoothly by median filtering. Output to the input port of the 

CamShift module. 

3)  CamShift Algorithm: This module consists of 

initialization, color histogram statistics, back projection, 

computing zeroth and first moment, calculating the centroid 

and displaying the tracking box. 

Initialization: Select a target and put the target into the 

target box. 

Color histogram statistics: Put the color histogram of the 

first frame into RAM. Each frame will be compared with the 

first frame by searching the color histogram in the RAM in 

order to judge whether this pixel is the target pixel. 

Back projection: The target weights more, non-target 

weights less. Back projection will help us to locate the target 

position. 

Compute the zeroth and first moment: We use the formulas 

mentioned in the previous Chapter to compute zeroth and first 

moment. We use the multipliers in Quartus II to do 

multiplication.  

Output the centroid: We use the formulas mentioned in the 

previous Chapter to compute the centroid. We use the dividers 

in Quartus II to do division as well. 

Display the tracking box: Set the centroid as the geometric 

centre of the tracking box and display the tracking box. 

We use state machine to implement the controlling and 

state transition of each sub module. State machine overcomes 

the inflexible controlling of the pure digital hardware 

architecture and makes the timing and logic more accurate.  

The clear structure contributes to debugging and modification. 

B. Hardware Implementation of Particle Filtering Algorithm 

Combining Particle Filtering with FPGA features, the 

module partition of the hardware architecture is shown in 

Fig.5. It includes initialization, target selection, color 

histogram statistics of the target and each particle, particle 

weight computation, target capture, resampling and RAM. We 

use the initialization to clear RAM. Then, set the size and 

location of the target. The display module is to output the 

original image and computing result. 

1) Feature Model of Particle Filtering: We choose the H-

component histogram as the feature model to track the target, 

shown in Fig.4. 

2) Color Histogram Statistics of the Target: If the input 

image is the first frame, this system generates the color 

histogram and prepares for the weight computing.  

We use the H-component as the RAM address to do read-

write operation. The read data equals the written data adding 

one. 

3) Color Histogram Statistics of Each Particle: Particle 

Filtering computes the posteriori probability distribution of 

the target state variables by a series of random particles. We 

use the method shown in Fig.6 to produce random 

particles ),( yx . 

Given the coordinate of each particle, we use the method 

mentioned in the previous section to get the color histogram of 

each particle. 

4) Compute the weight of the particles: Computing the 

weight of the particles is the key to Particle Filtering, 

involving lots of multiplication, division, radication and 

superposition. We can take advantage of the FPGA parallel 

structure to compute the weight of each particle in parallelism, 

but we still need compute enough particles to have a great 

experimental effect. In this paper, we use 128 particles, so it 

costs lots of hardware consumption. Considering the slot time 

between each frame, we use the time multiplexing to compute 

the weight of the particles, as shown in Fig.7. 
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Y

Color histogram of 
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weight
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End tracking?

N
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Fig. 5 Module partition of Particle Filtering hardware architecture 



5 

+

Random number 

generator

X_in X_out

+
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Fig. 6 Particles generator 

5) Target Capture: After getting the weight of each particle, 

we sort them and get the particle with the biggest weight. 

Choose the particle ordinate as the target ordinate. 

6) Resample: Particles are random in the Particle Filtering. 

Particles with small weight contribute little, but they lead to 

severe degeneracy. Resampling deletes the particles with 

small weight and replaces them with large weighted particles. 

 

The weight of 

No.1-16 

particles

Moment 1

The weight of 

No.17-32 

particles

Moment 2

…

…

The weight of 

No.113-128 

particles

Moment 8

Output the 

weight

 
Fig.7 Compute the weight of the particles 

7) RAM: We use the RAM on FPGA to store the color 

histograms of the target and each particle. 

IV. EXPERIMENTAL RESULTS 

 
Fig.8 FPGA-based visual target tracking system 

As shown in Fig.8, we use the multimedia circuits design 

resources on the DE2-115 to build this FPGA-based target 

tracking system. The camera is to collect the video signal. We 

use the digital-to-analog conversion, Cyclone IV and SDRAM 

to process the video signal and implement the CamShift and 

Particle Filtering algorithms. The display is to output the 

processed video signal. The left part of the display is 

experimental results of CamShift algorithm and the right part 

is Particle Filtering algorithm. 

A. Qualitative Experimental Results 

1)  In a simple scenario 

In a simple scenario, we set the human face as the target. 

The experimental effect is shown in Fig.9. First, we select a 

target and initialize the system. From the 111
th

, 188
th

 and 

272
nd

 frames, CamShift and Particle Filtering algorithms both 

meet the demand of target tracking. Observe the 188
th

 and 

272
nd

 frames carefully. CamShift can track the target but the 

tracking box shifts partially. Particle Filtering still has a great 

performance in a simple scenario. 

 

     CamShift             Particle Filter

Target Selection

     CamShift             Particle Filter

111th Frame

     CamShift             Particle Filter

188th Frame

     CamShift             Particle Filter

272nd Frame  
Fig.9 Target tracking effect in a simple scenario 

2)  In a complex scenario 

In a colorful and complex scenario, the tracking effect of 

CamShift and Particle Filtering algorithms are shown in 

Fig.10. Both algorithms choose the color as their features, so 

colorful scenario causes the interference to target tracking. 

Experiment shows CamShift and Particle Filtering are still 

effective in complex scenario, but the shift extent of CamShift 

is more serious than Particle Filtering. 

     CamShift             Particle FilterTarget Selection

     CamShift             Particle Filter

Target Selection

     CamShift             Particle Filter

88th Frame

     CamShift             Particle Filter

228th Frame

     CamShift             Particle Filter

368th Frame  
Fig.10 Target tracking effect in a complex scenario 
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3)  With a  complex target 

As shown in Fig.11, we hold two toys in hand as the target 

and compare the performance of both algorithms. From the 

123
rd

, 272
nd

 and 340
th
 frames, CamShift loses the target, while 

Particle Filtering can track the target accurately. When we 

track the target with only one color, CamShift shows a great 

performance. If the target includes complex color information, 

the tracking effect is poor. However, Particle Filtering still 

shows a strong performance with a complex target. 

4)  In a dark scenario 

Light is an important factor in image processing. The 

tracking effect in a dark scenario is shown in Fig.12. From 

72
nd 

frame, CamShift loses the target. In the followed frames, 

it still loses the target. When the target is close to the tracking 

box, it can continue tracking, but the shift extent is serious, 

shown in 130
th 

frame. From the 263
rd

 frame, it loses the target 

again. Particle Filtering still works in a dark scenario. 

Experiment approves that light has a great influence on the 

CamShift, but Particle Filtering is still robust. 

 

     CamShift             Particle Filter

Target Selection

     CamShift             Particle Filter

123rd Frame

     CamShift             Particle Filter

272nd Frame

     CamShift             Particle Filter

340th Frame  
Fig.11 Target tracking effect with a complex target 

     CamShift             Particle Filter

Target Selection

     CamShift             Particle Filter

72nd Frame

     CamShift             Particle Filter

130th Frame

     CamShift             Particle Filter

263rd Frame
 

Fig.12 Target tracking effect in a dark scenario 

5)  With an obstruction 

In practical application, if a car is waiting during the red 

light and a man is crossing the road, the man will occlude the 

car. Therefore, we need the algorithm to be anti-occluded. As 

shown in Fig.13, from 296
th

 frame, CamShift loses the target, 

while Particle Filtering still has a great performance. 

6)  Velocity of target 

A good algorithm should still be effective, when the target 

moves fast. As shown in Fig.14, from the 128
th

, 238
th

 and 

332
nd

 frames, when the target moves at 20 pixels/frame, both 

algorithms can track the target. From 458
th

, 470
th

, 483
rd

 and 

492
nd

 frames, when the target moves at 40 pixels/frame, 

CamShift loses the target. From 458
th

 frame to 470
th

 frame, 

the tracking box of the CamShift shifts to the target slowly. 

When the target moves fast and goes through the tracking box, 

CamShift is effective again. From the 483
rd

 frame to the 492
nd

 

frame, the tracking box does not change the position. 

Experiment shows the refreshing of CamShift is slow, while 

Particle Filtering has a better real-time performance. 
 

Target Selection 198th Frame

253rd Frame 296th Frame  
Fig.13 Target tracking effect with an obstruction 
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     CamShift             Particle Filter

238th Frame

     CamShift             Particle Filter

332nd Frame

     CamShift             Particle Filter

458th Frame

     CamShift             Particle Filter

470th Frame

     CamShift             Particle Filter

483rd Frame

     CamShift             Particle Filter

492nd Frame

     CamShift             Particle Filter

Target Selection
     CamShift             Particle Filter

128th Frame

  

Fig.14 Impact of velocity on the target tracking 

 

7)  With different particles 

As shown in Fig.15, from the 775
th

 and 823
rd

 frames in 

Fig.15(a), Particle Filtering with 16 particles has a poor 

tracking performance. If the particles increase to 64 particles, 

the accuracy of the tracking effect improves obviously. 

Experiment shows the number of particles has a great 

influence on Particle Filtering. If we compute more particles, 

the tracking effect will be better. 

Target Selection 140th Frame

775th Frame 823rd Frame  

(a) Target tracking effect of 16 particles 

Target Selection 93rd Frame

175th Frame 442nd Frame  

(b) Target tracking effect of 64 particles 

Fig.15 Target tracking effect with different particle numbers 

B. Quantitative Experimental Results 

1)  Influence of particle numbers on the operation time 

Table 1 shows the operation time to compute one frame 

with different particle numbers. It will cost a long time if we 

have too many particles to compute on PC, while FPGA costs 

the same time with different particle numbers. With the 

increasing of the particle numbers, PC will compute them one 

by one. However, with the help of FPGA parallel structure, 

Particle Filtering can compute all particles in parallelism. 

Experiment shows compared to PC systems, the operation 

time has been largely accelerated by the hardware architecture. 

When we have a large number of particles to be computed, 

this advantage will be obvious. 
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TABLE I 
OPERATION TIME OF PARTICLE FILTERING ALGORITHM ON PC AND FPGA 

Particles 

 numbers 

PC 

operation time(s) 

FPGA 

operation time(s) 

8 0.0191 0.0167 

16 0.0342 0.0167 

32 0.0493 0.0167 

64 0.1029 0.0167 

128 0.1920 0.0167 

TABLE II 
RESOURCE CONSUMPTION OF FPGA 

Resource 

Consumption 
Available 

CamShift 

Used 

Particle 

Filter 

Used 

Combinational 

LE with no register 114,480 

5,703 

(4.98%) 

46,948 

(41.01%) 

Sequential LE 
114,480 

2,832 

(2.47%) 

6,479 

(5.66%) 

Combinational 

LE with a register 114,480 

4,245 

(3.71%) 

15,603 

(13.63%) 

Dedicated logic 

registers 114,480 

7,077 

(6.18%) 

22,082 

(19.29%) 

LABs 
7,155 

948 

(13.25%) 

5,654 

(79.02%) 

M9Ks 
432 

36 

(8.33%) 

241 

(55.79%) 

Block memory 

bits 3,981,312 

243,834 

(6.12%) 

1,571,413 

(39.47%) 

Embedded 

Multiplier 9-bit 

elements 
532 

22 

(4.14%) 

58 

(10.90%) 

PLLs 
4 

1 

(25%) 

1 

(25%) 

2)  Power dissipation and resource consumption of FPGA 

As shown in table 2 and table 3, Particle Filtering has large 

power dissipation and consumes many resources. From the 

qualitative experiments, the performance of the CamShift is 

not as good as Particle Filtering. Experiments show CamShift 

and Particle Filtering algorithms have their own advantages on 

different conditions. If the power dissipation is limited, 

CamShift is a better choice. If we have a demand on accurate 

tracking, Particle Filtering is an efficient and reliable target 

tracking algorithm. 

TABLE III 
POWER DISSIPATION OF FPGA 

Sort 

CamShift 

Dissipation 

(mW) 

Particle Filter 

Dissipation 

(mW) 

Total thermal 

power dissipation 381.51 585.47 

Core dynamic 

thermal power 

dissipation 
87.07 267.73 

Core static thermal 

power dissipation 103.27 108.44 

I/O power 

dissipation 191.18 209.10 

V. CONCLUSION 

In this paper, we propose a FPGA-based hardware 

architecture on basis of CamShift and Particle Filtering. 

Experiments show the proposed system can meet the target 

tracking demands. On the condition of complex target, dark 

scenario and fast movement, Particle Filtering has more robust 

anti-jamming capability. The performance of Particle Filtering 

can be improved by increasing particles. The FPGA parallel 

structure can improve the real time performance of Particle 

Filtering algorithm. Particle Filtering has a great performance 

at the cost of resource consumption. On condition of limited 

resource, CamShift algorithm is a better choice. FPGA 

parallelism processing largely accelerates the operation time. 

Experiments show the proposed hardware accelerating 

architecture has a great performance. 
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