

 Implementation of Music Broadcast System

 Using Altera DE2 Boards and Qt
 Cheng-Long Zhao, Hui-Bin Shi, Qiao-Zhi Sun, and De-Chun Kong

 Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

zhaochenglong08@126.com

hshi@nuaa.edu.cn

504914613@qq.com

263860242@qq.com

Abstract— This paper will introduce a music broadcast system

based on schedule using Altera DE2 boards and Qt technology.

The system has Client/Server architecture. Qt technology is used

to set up a server in Ubuntu operation system. It will manage all

online DE2 boards and send commands to them to play music

stored on SD card inserted into the board.

Keywords— FPGA; Scheduled Music Broadcast; Qt; Nios II

I. INTRODUCTION

What’s the traditional use and implementation of broadcast

system? How to implement a school on time bell system?

Have you ever thought about these questions?

Broadcast system has many implementation methods which

include: traditional transmission with power broadcast system,

digital audio broadcasting (DAB), radio broadcast system and

so on.

With the development of Internet, IP broadcasting is

becoming another kind of broadcasting system. About IP

broadcasting you can see in [7]. What we have done is also a

broadcast using Internet. But we want to do it in a different

way. We use FPGA as the terminal and use UDP (User

Datagram Protocol) to communicate between terminals. Our

work now is focused on the manageable schedule play which

can be used in school or university, used for daily fixed audio

playback. Due to joining the network, it can be extended

easily according to need. All the play songs are stored in SD

card (Secure Digital Memory Card).

We can also see a no network play system which is very

similar to our system. It was listed in [8].

II. SYSTEM ARCHITECTURE

The system architecture is show in Fig.1.

DataBas

e

Etherne

t

Server

…………

…………

UDP

UDP

DE2 Board DE2 Board DE2 Board DE2 Board

Loud Speaker

UDP UDP UDP UDP

Router

Loud Speaker Loud Speaker Loud Speaker

Fig.1 System architecture

2

As shown in Fig.1, our system uses Client/Server model.

On the server side, we use Qt technology to build a

management program, while on the client side we use DE2

development board. The communication between server and

client uses UDP protocol. The DE2 board we use has a lot of

resources as shown in Fig.2.

Cyclone II

FPGA

2C35

50MHz/27MHz/Extin

16-bit Audio CODEC

VGA 10-bit Vedio DAC

TV Decoder

User Green LEDs(8)

User Red LEDs(18)

16*2 LCD Module

PS2 & RS-232 Ports

Toggle Switch(18)

Pushbutton Switches(4)

USB 2.0 Host/Device

10/100 Ethernet Phy/

MAC

SD Card

IrDA Transceiver

Flash (4 Mbytes)

SDRAM (8 Mbyte)

SRAM (512 Kbytes)

7-Segment Display (8)

Expansion Headers (2)

EPCS16

Config

Device

USB

Blaster

Fig.2 Block diagram of the DE2 board

As shown in Fig.2, the DE2 board has many features that

allow the user to implement a wide range of designed circuits,

from simple circuits to various multimedia projects. The

following hardwares are used in our system:

 Altera Cyclone II 2C35 FPGA device

 Altera Serial Configuration device-EPCS16

 USB Blaster for programming

 8-Mbyte SDRAM

 SD Card socket

 4 pushbutton switches

 18 red user LEDs

 9 green user LEDs

 50-MHz oscillator and 27-MHz for clock sources

 24-bit CD-quality audio CODEC(WM8731) with line-

in, line-out, and microphone-in jacks

 10/100 Ethernet Controller(DM9000) with a

connector

 16*2 LCD Module

The key modules for our application are Wolfson WM8731

24-bit sigma-delta audio CODEC, which is used for wav file

codec and sends out signals to loud-speaker. The SD card

socket provides 4-bit SD mode for SD card access and storage

of audio files of wav type. The communication device

DM9000A, supports full-duplex operation at 10Mb/s and

100Mb/s, with auto-MDIX (Medium Dependent Interface

cross-over).

We use a Nios II soft core to control all the modules

mentioned above.

Firstly, we give a brief description of the working process

of the system. To begin the working process we first enter a

music library on the server part. We make sure the library is in

sync with the SD card’s music file list on DE2 board. Next,

we formulate a week music play schedule to indicate the

university class starting and ending respectively, which will

regularly send broadcast commands to the DE2 development

board to play. Upon receiving the command, the board will

check to see if the music file name within the command exists

in the SD card’s music list. If it exists, the board will play the

song.

In order to let the manager software know the current

terminal online, we use the heartbeat packets sent from DE2

board to inform software on PC. If the software detects that

there is at least one terminal online, it will enable the

broadcast.

III. MANAGE SOFTWARE DESIGN

In order to build managing software on PC, we choose a

cross-platform technology called Qt.

Qt is a cross-platform application and UI framework for

developers using C++ or UML （ Unified Modeling

Language）, a CSS and JavaScript like language. Qt Creator

is the supporting QT IDE. Qt, Qt Quick and the supporting

tools are developed as an open source project governed by an

inclusive meritocratic model. Qt can be used under open

source (LGPL v2.1) or commercial terms. More information

about Qt can be seen at [1].

Before we introduce the design of our managing software,

we firstly introduce some concepts in Qt which have been

used in our design. All the information can be found in the Qt

develop suite’s Qt assistant software.

The first thing we need to introduce is Qt’s support for the

database. The QtSql module uses driver plugins to

communicate with the different database APIs. Since Qt’s

SQL module API is database-independent, all database-

specific code is contained within these drivers. Several drivers

are supplied with Qt and other drivers can be added. The

driver source code is supplied and can be used as a module for

writing your own drivers. Since we don’t have many data to

store, we choose a small and cross-platform database called

SQLite. More information about this database can be found at

[2].

The next thing is Qt’s event driven module. Qt uses signals

and slots to communicate between objects. The signals and

slots mechanism is a central feature of Qt and probably the

part that differs most from the features provided by other

frameworks. A signal is emitted when a particular event

occurs, for example when we push a button on the widget or

we closed it. A slot is a function that is called in response to a

particular signal. Qt’s widgets have many pre-defined slots,

but it is common practice to subclass widgets and add your

own slots so that you can handle the signals that you are

3

interested in. The more things about this topic you have to

look up the assistant software with topic Signals & Slots.

The last thing is Qt’s model/view architecture. Model/view

architecture is evolved from MVC (model-view-controller). If

the view and the controller objects are combined, the result is

the model/view architecture. This still separates the way that

data is stored from the way that it is presented to the user, but

it provides a simpler framework based on same principles.

This separation makes it possible to display the same data in

several different views, and to implement new types of views,

without changing the underlying data structures. The model

communicates with a source of data, providing an interface for

the other components in the architecture. The nature of the

communication depends on the type of data source, and the

way the model is implemented.

The view obtains model indexes from the model; these are

references to items of data. By supplying model indexes to the

model, the view can retrieve items of data from the data

source.

In standard views, a delegate renders the items of data.

When an item is edited, the delegate communicates with the

model directly using model indexes. The work of this

architecture can be seen in Fig.3.

Data

Model

View

Delegate

Editing

Rendering

Rendering

Fig.3 model/view architecture

The manager software we designed has a clear main

interface. It is shown in Fig.4.

Fig.4 Main interface of manage software

As shown in Fig.4, in the main interface, we can see the

information such as date, time, day of the week and the

schedule of this day. Also we can see the now online terminal

number of this system. On the left of the main frame there are

two buttons. The top one is to show the media manager

interface. The one below is to show the schedule manager

interface.

When we push the top button we can see the media

manager interface in Fig.5.

Fig. 5 Media manage interface

As shown in figure 5, we can see an edited media list on the

left part of the interface. On the right is edit partition to add,

remove and change information about the media. It is

important to note that the audio command is upper case string

of the song name in the SD card in the terminal which will

send to the terminal on time.

When we push the bellow button on the main interface, we

can see the routine management interface in Fig.6.

4

Fig.6 Routine management interface

As shown in Fig.6, we can specify a scheme, this scheme

includes a week schedule. Each day of the week has several

items to do which can be edited by the below part of this

interface. When we add an item we can choose the start time

of this item and the play song. The choosing song widget is

shown in Fig.7.

Fig.7 Song Select Interface

As shown in Fig.7, we just need to select one play song for

the editing item. In order to store the data of this system, we

designed some table in database to store these. The database

relationship can be seen in Fig.8.

DE2_SongLib

PK ID

 Name

 Info

DE2_WeekInfo

PK ID

 Name
DE2_DaySchedule

PK ID

FK1 WeekID

 StartTime

 SongIDDE2_Scheme

PK ID

 Name

 IsInUse DE2_ShemeContent

PK ID

FK1 SchemeID

FK2 WeekID

 StartTime

 SongID

Fig.8 Database relationship of the system

We can see in Fig.8, we don’t have a very complicated

database structure since we don’t have very complicate data to

store. In the next part of our paper, we will introduce our

hardware design.

IV. HARDWARE DESIGN

Many commercial media/audio players use a large

external storage device, such as an SD card or CF card to

store music or video files. Such players may also include

high-quality DAC (Digital-to-Analog Converter) devices so

that good audio quality is produced. The DE2 board provides

the hardware and software needed for SD card access and

professional audio performance so that it is possible to

design advanced multimedia products using the DE2 board. It

also provides a fast Ethernet controller on DE2 board. We can

use the Nios II processor to send and receive Ethernet packets

using the DM9000A Ethernet PHY/MA Controller. Since the

packet and command we want to communicate between DE2

board terminal and PC software is very short and we must

broadcast our message to all the terminals online, so we

choose UDP as our transmit protocol.

The first thing we need to do for hardware design is to set

up the system we need in SOPC (System on a programmable

Chip). The version of Quartus II we used is version 12.0. In

order to better control the audio playback and network

communication, we choose the Altera soft core of Nios II as

our control chip and drivers of the DM9000A and WM8731

are as slave peripherals articulated on the Avalon bus. The

hardwares we used have been listed in section II.

In our system we show how to implement an on time SD

card music player by using Ethernet communication on DE2

board, in which the music files are stored in an SD card and

the board can play the music files via its CD-quality audio

DAC circuits. We use the Nios II processor to read the music

data stored in the SD card and use the Wolfson WM8731

audio codec to play the music. The Ethernet device is

DM9000A.The structure of this system is shown in Fig.9.

5

Nios II

CPU

I2C Audio

Configuration

Audio DAC

Controller

Bypass

ADC to DAC

Audio

CODEC

Line-out

Line-in

Mac-in

Ethernet

Driver

SD Card

Fig.9 Hardware system architecture

As shown in Fig.9, we use Nios II processor to process

reading from SD card, send data to audio codec and

communicate with PC program.

The remaining of the paper is organized as follows. We will

first introduce the soft main flow chart of hardware system on

Nios II. Then we will briefly describe the implementation of

the key module of this system like DM9000A, WM8731 and

SD card.

A. The main function process

The flow chart about main function of embedded software

is shown in Fig.10.

Start

Init device

Init parameter

Wait SD

 Card insert

Mount SD Card

Build wave

play list

SD Card Ready?

Get Play Index

Play Song

playIndex!=-1?

Handle key press event

N

Y

N

Y

Fig.10 Main function process

When DE2 board is power on, it will first init peripheral

equipment such as LCD display, DM9000A. Then the volume

of the output for WM8731 is set to initial number. After doing

these, it will try to wait SD card insert into the socket on the

DE2 board and mount it if the file system is supported. If so,

the next thing for DE2 to do is to build up play list. All of the

above work is initializing work required. If there is an

interrupt on DM9000A, we will get a play song name string

and compare it with the play list to find an index. If we found

one, the DE2 terminal will start to play.

B. DM9000A and Ethernet Communication

We already have mentioned DM9000A several times

before we start this topic. In order to transmit command, the

system must contain network interface module which is

designed as IP-core in SOPC Builder. This module needs to

achieve function of hardware interface design and hardware

abstraction layer driving design. All we need is supported by

Terasic Company and DE2 board since it has DM9000A

device. The DM9000A is a fully integrated powerful and

cost-effective fast Ethernet MAC controller with a general

processor interface, an EEPROM interface,10/100PHY and an

4KB SRAM[3].

6

The system adopts UDP protocol to send command string,

UDP is a simple, datagram-oriented, transport layer protocol.

UDP provides no reliability: it sends the datagrams that the

application writes to the IP layer, there is no guarantee that

they ever reach their destination. So in our further design we

will add up an answer string to server. The process of

commands transmition of this system can be described as

follows:

1) Initialize network card and other peripheral

equipments.

2) Arp communication: ARP protocol is address

resolution protocol which resolves IP address of the

target host to Ethernet(MAC) address, in order to

ensure communication. So at the beginning of first

communication, we must know IP address of the

target, then send ARP message to local the MAC.

3) UDP communication: All the UDP packet we send is

encapsulated by our self. It must encapsulate data

according to Fig.11.

UDP DataUDP Header

8 Byte

IP DataIP Header

20 Byte

IP DataMAC Header CRC

14 Byte 4 Byte

UDP datagram

IP datagram

MAC datagram
Fig.11 UDP encapsulation format

As shown in Fig.11, the first part of MAC header in the

network interface layer, total 14 byte; the second is part o IP

header in network layer, total 20 bytes; following is part of

UDP header in transport layer; the last part is sending data.

In order to let server know there is terminal online, we init

a timer to send const string to server which we called hearbeat

package. The format of this packet is

“@@terminal_id@HeartBeat”. The terminal id is a serial

number string like “00001” which gives a unique string to

DE2 board. We set the timer interval of 1s, that is to say,

every second, the server will receive a heartbeat packet.

When server receives these hearbeat packets it will check if

the serial number of terminal has been added to online

terminals list. If so, server will set the out of time of this

terminal to zero, otherwise, it will add the time out number

until it reach the upper bound and will be remove from the

online list.

In order to check whether UDP packet has been send to PC

or not, we used a program in Windows 7 called WireShark

before we start combine our system to Ubuntu. WireShark is a

capture package tool and easy to use. One of picture about a

non-meaning string we send to PC in our design is show in

Fig.12.

Fig.12 UDP Send to PC

C. Audio Play Module

I
2
C bus is a kind of two-wire serial bus, developed by

PHLIPS, used to connect micro-controller and peripherals.

There are two signal lines in I
2
C serial bus. One is a two-way

data line (SDA), the other is the clock time line (SCL). The

serial data lines of slave devices must connect to data line

(SDA) when it links to I
2
C bus. The clock lines of devices

connected to I
2
C bus’s clock line SCL, which can achieve

serial data transmission between master and slave devices

easily [4].

In the design, I
2
C controller realized on FPGA could

control the WM8731 and transmit data. The working modes of

WM8731 include the master and slave modes. When working

in slave mode, WM8731 response the data coming from the

audio data interface—convert the digital audio signal into

analog audio through the D/A, and then play the sound signal.

There were four modes in WM8731 audio-data transmission:

left-justified, right-justified, I2S and DSP modes. In this

design left-justified mode was chosen to realize the audio-data

transmission between FFPGA and WM8731.

The audio codec is configured in the slave mode, where

external circuitry must provide the ADC/DAC serial bit clock

(BCK) and left/right channel clock (LRCK) to the audio codec.

The audio DAC controller is integrated into the Avalon bus

architecture, so that the Nios II processor can control the

application [5].

During operation the Nios II processor will check if the

FIFO memory of the Audio DAC controller becomes full. If

the FIFO is not full, the processor will read a 512-byte sector

and send the data to the FIFO of the Audio DAC Controller

via the Avalon bus. The Audio DAC Controller uses a 48 kHz

sample rate to send the data and clock signals to the audio

CODEC. The design also mixes the data from microphone-in

with line-in.

To play a music file with this system, the file must use the

48KHz sample rate and 16-bit sample resolution wav format.

Copy one or more such wav files onto the FAT16-formatted

7

or FAT32-formatted SD card. Due to a limitation in the

software used for this system, it is necessary to reformat the

whole SD card if any wav file that has been copied onto the

card needs to be later removed from the SD card.

D. SD Card Module

SD card is a flash memory device based on a new

generation of semiconductor memory devices. SD card with

high memory capacity, fast data transfer rates, great flexibility

and good mobile security. Considering of system size, power

and storage capacity, it is easy to find out there are great

advantages to choose SD card as the storage device for those

systems which are based on the FPGA chip [6]. The more

things about SD card reading and writing can also be find in

[6].

The mode we use is 4-bit SD mode and the file system is

FAT16. In order to use this mode we need first realize some

command for SD card. The commands we use includes:

CMD0, CMD8, CMD55, CMD2, CMD3, CMD9 etc.

In order to use FAT16 file system, we also need to know

the structure of this system. There are four parts in FAT16 file

system which can be seen in Table.1.

TABLE I

LOGIC STRUCTURE OF SD CARD

Master boot sector 32 sector

Partition boot

record(PBR)

1 sector

FAT Table 1 According to the capacity of the SD Card

FAT Table 2 According to the capacity of the SD Card

Data section According to the capacity of the SD Card

The structure of FAT16 file system in SD card contains

four parts. It is the Partition Boot Record (PBR), File

Allocation Table (FAT), File Directory Table and Data

Section.

In the PBR, the BIOS parameter record block in which

recorded some most important parameters. The position of

FAT, file directory table and data area (which sector in SD

card) can be calculated through these parameters. Following

the partition boot record is FAT area. FAT table records the

link information of files which store between clusters. This is

the chain store of files. Following the FAT table is the file

directory table FDT (File Directory Table), which takes over

32 fixed sectors; each sector can hold 16 register items. The

contents of the registration contain file name, file attributes,

modification time, file length, etc Following FDT is the data

area which takes up most of the disk space and is used to store

file.

After test, the system we designed can detect the number of

terminal online and let terminal play special song on the time

we specified in schedule.

V. CONCLUSIONS

We introduced a system use both software and hardware

knowledge to combine a system called on time music

broadcast system. This system used Qt technology to

implement GUI and functions on PC part which will make it

very easy to change it’s platform from Ubuntu to Windows.

Also we use UDP as the protocol when we communicate

between PC and DE2 board. UDP can easily implement

broadcast communication in local area network (LAN).

But after deeper thinking about our system, we can find

some weaknesses about our system.

1) If there is no network available, how to deal with the

bell ring for teaching work?

So, it’s better to and a configuration file to ensure that no

network condition system can work normally. The

configuration file can use XML format or plain text. Also we

need an external clock circuit to get the current time since

DE2 board doesn’t support this function.

2) If we need the function of speech can be supported in

our system?

Maybe, the biggest problem is on the software side since

first thing we need to capture data from sound card and then

we will need to encode the data to wav format which is

supported by our system and send it to the online terminals.

3) If we need to group the terminal by grade 1, 2…

We can think about more additional functionality. Our try

just is a start. The more important and the main meaning of

our work is to expand the use of FPGA in daily application.

ACKNOWLEDGMENT

Many thanks must give to Altera Corp for supplying

excellent FPGA chips and development board. We want to

thank TERASIC providing a solid background for our work.

REFERENCES

[1] (2013)Qt,http://qt-project.org/.
[2] (2013)SQLite,http://www.sqlite.org/1.

[3] DM9000 ISA to Ethernet MAC Controller with integrated 10/100

PHY.AVICOM Inc, 2001.
[4] Hai, X., Zhao, C., & Jiang, X. (2012). Train station classification for

passenger dedicated line. International Journal of Advancements in

Computing Technology, 4(15), p.328-335.
[5] (2013)DE2_UserManual_1.6.pdf,http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=China&CategoryNo=60&No=31&Part

No=4
[6] Zhenlin LU, Jingjiao LI, Yao Zhang, “The reading/ writing SD card

system based on FPGA”,in First International Conference on
Pervasive Computing, Signal Processing and Applications,2010,p.419-

422

[7] TetsutaroUEHARA,Takashi SAT0, Katsunori YAMAOKA, “The
design and implementation of a music broadcasting system via IP

multicast with user-authentication”, Communications, Computers and

signal Processing, 2003. PACRIM. 2003 IEEE Pacific Rim
Conference ,vol(2),p.984-987

[8] LIANG Hong-wei, LI Jian-ai, KAN Ling-ling, “Implementation of SD

Card Music Player Using Altera DE2-70”, International Conference on
Multimedia and Signal Processing,2011,p.150-153

