

 Towards Wearable Virtual Reality System Using

Micro IMU Controller and FPGA Platform
 Wen-Xian Wu, Yan Shao, and Quan-Biao Chen

 School of Software and Microelectronics at Wuxi, Peking University

wxwu@pku.edu.cn

1101220661@pub.ss.pku.edu.cn

Abstract—Virtual Reality (VR) is a computer-simulated

environment that can simulate physical presence in places in the

real world or imaginary world. We use FPGA to implement this

design to take advantage of its hardware/software co-design and

its high computation speed. We use IMU as the main input. It

captures and sends motion data to FPGA. FPGA plays an

important role in this system. It drives hardware, processes data,

and stores and manages pre-stored image or sound material.

After processing, system outputs image and voice, and imports

into media glass and speaker, which are used as output devices,

respectively. The final result shows that our system designed with

FPGA can run fast and smoothly, easy to maintain and update,

and it shows great potential.

Keywords—FPGA; co-design; virtual reality; sensor; media

glasses

I. INTRODUCTION

Virtual Reality (VR) is a computer-simulated environment

that can simulate physical presence in places in the real world

or imaginary world, provides users with visual, auditory,

tactile and other sensory simulation. Some advanced, haptic

systems now include tactile information, generally known as

force feedback, in medical and gaming applications.

Virtual reality is often used to describe a wide variety of

applications commonly associated with immersive, highly

visual, 3D environments. So it can be used in entertainment,

training or other kinds of special applications.

There are two kinds of design trends of VR system. One is

upsizing design. This kind of design can provides precise

simulation of the real world to create a lifelike experience, for

example, in simulations for pilot or combat training. But the

equipments of this design are usually heavy and expensive.

The other kind of design is miniaturization. It reduces the size

of equipments at the expense of performance and response

time.

In our design, we aim at building a small size wearable,

quick responding VR system. The system uses inertial

measurement unit (IMU) to acquire motion signal. And it is

based on FPGA. It is a programmable system that combines

the advantages of hardware and software to work together,

achieves integration of upper task and underlying hardware,

and reduces the difficulty of development. It uses hardware

acceleration’s core, which can independently work as a CPU,

and that makes it possible to transmit and process large

amount of data. In addition, FPGA has high computation

speed which can provide smooth user experience, low power

consumption, and high level of integration. Therefore, we take

FPGA as the core of our design.
[1]

In this paper, we use a micro IMU as controller, and DE2-

115 as our design platform. We use Bluetooth to communicate

between nodes, and use SOPC design to build the main

control unit.

II. HARDWARE

To build a complete VR system, there are several

components we need: sensor, controller, DE2-115, M92 media

glass and speaker. Their relationships are shown in Figure 1.

Figure 1 Relationships between components

1) Sensor. In our design, we use a homemade inertial

measurement unit (IMU) as the main input. It is an electronic

device that measures and reports on a human's velocity,

orientation, and gravitational forces, using a combination of

accelerometers (LPR550AL) and gyroscopes (ADXL335).

Once the human’s status changes, the IMU will detect this

change and transmit corresponding signal to FPGA in the

form of ADC signal.

2) RN-42. It is a Bluetooth module, which can provide

wireless communication between sensor and FPGA, and send

data into it.

http://en.wikipedia.org/wiki/Haptic_technology

2

3) Controller. A keyboard is used to work as auxiliary input.

In this shooting game, we use sensor to control aim point, and

use keyboard to control character’s motion.

4) DE2-115. It is the core of our design. It provides all

drivers that we need, like VGA, sound, SD card and FAT file

system driver which designed for SD card read and write

operation. Also it is main processer in the system which

calculates raw signal it received from sensor, and send

processed output data into display device.

5) M92 media glass and speaker. The glass and speaker are

used to provide users immersion game experience.

In order to achieve the showing effect, we transplant a 3D

vision software into the system. Since we have introduced the

hardware, then the whole system’s structure can be built. It is

a three-layer structure, as shown in Figure 2.
 [2]

Figure 2 Whole system’s structure.

III. SYSTEM

A. System Control

In our design, we try to build up a complete VR system,

which means we should precisely acquire the motion signal.

And the main part of this layer is sensor. Our sensor is a

homemade inertial measurement unit, a combination of

accelerometers (LPR550AL) and gyroscopes (ADXL335).

The following section is going to introduce its working

principle.
[3]

Figure 3 Vector in coordinate axis

In three-dimensional space, we can describe a force in the

form of vector in coordinate axis, as is shown in figure 3. This

R represents force vector, which is gravity or a combination of

inertial forces, and can be detected by accelerometers

(LPR550AL). Once a certain force acts on the sensor, the

vector is certain, and the components of three axis are certain.

The accelerometer detects these vector components, and

output corresponding ADC signal, which we define as AdcRx,

AdcRy, and AdcRz. Then we can use formula 1 to calculate

Rx, Ry, Rz.

(* /1023) /X X REF ZEROR AdcR V V G Sensitivity 
 (1)

(* /1023) /y y REF ZEROR AdcR V V G Sensitivity 

(* /1023) /Z Z REF ZEROR AdcR V V G Sensitivity 

In this formula, Vref is reference voltage. It is 3.3V in our

design. VzeroG is zero voltage, which means the output

voltage without force acts, and is detected beforehand.

Sensitivity describes the change rate of voltage with the

change of force. And it is 300mV/g.

However the result we get from accelerometer is not

preciseness, because accelerometer is sensitive to vibration

and mechanical noise. To solve this problem, we introduce a

gyroscope. The gyroscope detects change rate of AXZ, AYZ,

and output corresponding ADC signal. We can calculate the

rate by using formula 2.

(* /1023) /XZ XZ REF ZERORateA AdcGyro V V Rate Sensitivity 
(2)

(* /1023) /YZ YZ REF ZERORateA AdcGyro V V Rate Sensitivity 

Since we get output, now we should combine the results. At

first, we use variables Racc to describe the results we acquire

from accelerometer and Rgyro to describe the results we get

from gyroscope. We detect every T seconds and store

accelerometer’s result as Racc(0), Rate(0), Racc(1), Rate(1),

3

Racc(2), Rate(2) and so on. We introduce a new variable Rest

to represent the calculated results. Assume accelerometer’s

result is right, and Rest(0)=Racc(0). Then we can acquire a

series of Rest, like Rest(1), Rest(2), Rest(3). After n times of

detect, we can get Racc(n), Rate(n) and Rest(n-1). To

calculate the Rest(n), we should first calculate the Rgyro(n).

We can use the following formulas to achieve that.

(1) arctan(Re (1),Re (1))XZ X ZA n st n st n   
 (3)

(1) ()
() (1) *

2
XZ XZ

XZ XZ

RateA n RateA n
A n A n T

 
  

Since we get the angles, we can then acquire the Rgyro’s

components.

2 2

1

1 cot(()) *sec(())
X

XZ YZ

R gyro
A n A n




 (4)

2 2

1

1 cot(()) *sec(())
Y

YZ XZ

R gyro
A n A n




2 2

1
()*

1
Z Z

X Y

R gyro Sign R gyro
R gyro R gyro


 

Where Sign(RZgyro) is used to describe RZgyro’s signal.

When RZgyro>=0, Sign(RZgyro)=1, and when RZgyro<0,

Sign(RZgyro)=-1.

The next step is calculating Rest(n), as is shown in formula

6.  is a variable that describe the degree we trust of

accelerometer and gyroscope, and is ordinary set as 5 to 20.

() ()*

Re ()
1

Racc n Rgyro n
st n

 


 (5)

And the last step is calculating angles.

arccos(Re / Re)XR XA st st
 (6)

arccos(Re / Re)YR YA st st

arccos(Re / Re)ZR ZA st st

After that, we can start the next round of detect and

calculation.

B. Hardware Driver

The chief role of hardware driver layer is to enable our

software system to invoke hardware components in FPGA,

exchange data, and then send out data through different input

or output ports. There are four main ports: SD card read &

write port, VGA output port, sensor input port and controller

input port.

1) SD card read & write port. Since the flash memory

space of DE2-115 is only 8MB, which is too small to support

a 3D software that has a large amount of pictures. SD card is

then used to store and invoke programs we need. NIOS II

software structure is based on a hardware abstraction layer

(HAL), which provides NIOS II software developers, ports,

application programmatic interface (API) and the standard C

library, as is shown in figure 4. The bottom of the SD card

hardware connects with NIOS II system through Avalon bus.

Figure 4 System structure [4]

To enable SD card read & write processes and manage data,

we should effectively organize data in SD card, store and

access in the form of files. Here we use the common used

FAT file system. The application layer functions we use to

invoke bottom functions are: FAT Init, FAT GetSize, FAT

Open File, FAT Read File and so on. Then we can operate SD

card by just invoking functions in top main.C file in NIOS II

system.

2) VGA Driver. When the program runs, it outputs vision

signal. The media glasses are used to show out this vision

signal. The glasses support signal in the form of

AV/CVBS/COMPONENT/VGA with resolution 640*480.

Considering about this resolution, we set these IP cores’

parameters as figure 5.

4

Figure 5 parameters of IP cores

Similar to the SD card driver, the hardware of VGA driver

layer connects to Avalon bus by using Qsys. The Binary VGA

Controller IP core is used to generate VGA control signal.

VGA_NIOS_CTRL is the top module of the IP core;

VGA_Controller provides horizontal and vertical timing

synchronizing signal to VGA interface; And has a Img RAM

module which plays the role of Flame Buffer.

VGA_OSD_RAM controls Flame Buffer to read or write. All

these IP cores are generated by SOPC Builder, and can be

invoked only after Qsys upgrading.

Also BSP in NIOS II can auto create HAL that

corresponding to VGA driver, and can connect and be invoked

like SD card part.

3) USB Interface. USB port is used in our design to receive

data that detected by sensor. DE2-115 has integrated the

Philips USB port chip, which provides USB host and USB

device functions. So we just need to generate ISP1362 control

signal, and set DE2-115 as hostport. And the control port is

set as figure 6.

Figure 6 control port design.

C. Vision Software Running

We have introduced system controlling and hardware

driving layers. The software is based on these two layers. To

achieve a good show effect, we transplant a general public

license program named Stellarium into our system. This is a

star field simulation rendered by openCV and coded by C++.

As we try to complete this transplantation and generate NIOS

II application, we found that it is very hard to direct run this

software. So we implement the task by three steps.

1) Transplanting Operation system. The uClinux system is

transplanted to provide necessary operation environment.

Then we can set C/C++ Build and General environment, and

add OpenCV interlinking library to make sure the software is

running properly.

2) Modifying OpenCV source code. This task aims at

modifying the software, to joint software and hardware. And it

can also be decomposed into three parts:

a. Reading & writing files and initialized setting, main

of which is reading SD card files and write them into cache;

b. Multi-input. The input devices are sensor, mouse and

keyboard. We receive signals from these devices respectively,

and convert them to signals that software can identify by

modifying key values.

c. Rewrite graphic output functions, main of which are

VGA interlinks, to improve the quality of the graphics output.

3) Setting and compiling software. This task is mainly

about generating statistic interlinking library of target

platform, building project, and at last run/debug.

In this way, we successfully create the program and achieve

the desired effect.

IV. CONCLUSIONS

In this paper, we introduce our design ideas of the virtual

reality system, implementation steps, and the transplantation

steps. At last we achieve a complete VR vision system. Its

acquisition accuracy is 90%. All these results are based on the

extraordinary performance of FPGA. Its hardware and

software co-design, integration layout, and fast computational

speed have all contributed to the building of this VR system.

This design takes full use advantages of FPGA, and show the

great characteristics and potential. What FPGA can do is not

only to support a simple vision software, but to play a big role

in virtual reality entertainment and applications.

REFERENCES

[1] www.altera.com, Cyclone FPGA family, NIOS software CPU
[2] Lin Xinming, Wang Chongsen, Wang Zhiheng. “Design and

Development of 3DMotion Sensing Gaming Platform Using FPGA.”

The 1st Asia-Pacific Workshop on FPGA Applications, Xiamen, China,

2012.
[3] Network. “Accelerometers and gyroscope.” http://www.docin.com/p-

530688750.html..

[4] Chen Xia, Li Kaihang. “Design of SD card file system based on SoPC

and NIOS II” Modern Electronics Technique, vol.35 No.16 2012

5

[5] Wu Nian-xiang, Xie Fa-zhong. “The design of SOPC embedded
system Based on FPGA”. Science and technology of West China,

vol.08, No.08, 2009.

[6] Zhang zhen, Li lei. “Research on embedded system based on SOPC”

Information Technology, No.12, 2007.

[7] Yang Yang, Ye Peng, Li Li. “Design and implementation of UART

based on FPGA” Electronic Measurement Technology, Vol.34,No.7
2011.

[8] Du Peng. “Nios II software based SD memory card interface design”

Computer Technology and Development
http://www.21ic.com/app/embed/201305/180817.htm

[9] Sun Hang. “The design of the serial communicational module on

FPGA based on NIOS II” Microcomputer Information, Vol.24, No.10-
2, 2010.

[10] Jiang Shijie, Yu Hongying, Hong Yongxue, Lin Lirong. “FPGA

implementation of VGA interface” Electronic Test, No.12, 2012.
[11] Zhu Wenwei, Xu Zhongren, “Design and Implement ofVGA graphic

controller based on FPGA” Journal of Guizhou University,

Vol.26,No.2,2009.
[12] Chen Yaojie, Lu Jianhua. “Research and Design of VGA interface

based on FPGA” Journal of Transport Information and safety.

No.2,2005

