

Design of Entropy Decoding Module in Dual-Mode

Video Decoding Chip for H. 264 and AVS Based on

SOPC
Hong-Min Yang, Zhen-Lei Zhang, and Hai-Yan Kong

School of Information Science and Engineering, Shandong University

yanghm900930@163.com

zzlyml123@126.com

sdkhy0808@126.com

Abstract— This document introduces the hardware design of the

entropy decoding module in dual-mode video decoding chip for

H. 264 and AVS standard. The entropy decoding module

designed in this document can realize the decoding of

CA-2D-VLC for AVS standard and CAVLC and CABAC for

H.264 standard. The Verilog HDL is used to accomplish RTL

design and the FPGA implementation is achieved on an Altera

Cyclone II EP2C35F672C6. The result indicates that the design

efficiently reduces the circuit area and improves the speed of

decoding.

Keywords—H.264; AVS; entropy decoding; FPGA; Verilog

HDL

I. INTRODUCTION

H.264 is currently the most advanced video coding

standard， and AVS is China's independent intellectual

property rights of audio and video coding standard. Because

H.264 standard has grabbed the opportunity of domestic

industrialization, but AVS standard is increasingly perfect

and gets the vigorous support of the government and

already has certain industrial development. So, AVS and

H.264 standard will have mutual fusion in our country, and

it follows that a requirement is put forward that the video

decoding chip must be compatible with the two standards.

The entropy decoding module designed in this document

can achieve entropy decoding for AVS and H.264 standard.

The design makes a lot of improvement in the

circuit structure and look-up algorithm, which improves

the decoding efficiency. The stream buffer and shifter, as

well as the Exp-colomb decoding module, is reused, and the

tables of AVS and H.264 standard are optimized.

Combinational logic is used to look up tables, which

reduces the use of memory, and the pipelining structure

improves the decoding speed. In CAVLC decoding module,

the decoding of the coefficient Coffetoken and

Trailing_ones_sign_flag are realized in a clock cycle, and

the recombinant of residual coefficient is done while

decoding Runbefore, which saves the clock cycle. In

CABAC module, efficient arithmetic decoding module is

adopted, which improves the CABAC decoding speed.

II. ENTROPY DECODING ALGORITHM

The entropy decoding algorithm for AVS standard is

adaptive variable length coding based on Exp-colomb code.

The syntax elements on macro block layer and above it use

fixed-length code or Exp-colomb code of zero order.

Residual coefficients adopt context-based adaptive 2-d

variable length coding (CA-2D-VLC). The array of (Run,

Level) is obtained by doing run-length encoding (RLE) to

residual coefficient matrix, and Run presents the number of

zeros before every non-zero coefficients, and Level is on

behalf of the value of quantization coefficient [1]. Then 19

variable length code tables are looking up according to

(Run, Level) to obtain the corresponding codes which are

encoded by Exp-colomb code of zero, one, two or three

order. So, before variable length decoding for AVS,

Exp-colomb decoding of k order is needed, and the formula

of the CodeNum and Length are as follows:

2 2 _

()

leadingZeroBits k kCodeNum read bits

leadingZeroBits k

 (1)

 2 1Length leadingZeroBits k

(2)

where leadingZeroBits is the number of consecutive

zeros in prefix of codeword. Then get syntax elements and

(Run, Level) by mapping CodeNum, and finally obtain

residual coefficients by inversely scanning (Run, Level).

In the basic and extensional profile of H.264, residual

coefficients use context-based adaptive variable length

coding (CAVLC), but fixed-length code or Exp-colomb

code of zero order, which is the same as that of AVS, is

adopted in other profiles. So, it lays a theoretical foundation

for the reuse of the Exp-colomb decoding module.

However, arithmetic coding method is also introduced to

the main profile of H.264. That is to say, the syntax

elements below the slice layer and residual coefficients can

adopt context-based adaptive binary arithmetic coding

(CABAC). When using CABAC to encode, data in the slice

is divided into 399 context models, each of which

is identified with ctxIdx, and in each model the probability

2

of looking up and updating is done. At the start of encoding,

binarization towards syntax elements is done, and the

syntax elements are transformed into corresponding binary

codes. Then at the beginning of each slice, 399 context

models are initialized and arithmetic coding can be carried

out on the next. After the completion of arithmetic coding,

the code engine is normalized and the context models are

updated. So when decoding, choose context model firstly

according to corresponding syntactic elements, and look up

the corresponding probability tables and calculate

progressive interval. Then do binary arithmetic decoding,

and finally do anti-binary method.
Knowing from the analysis of the above, the difference of

variable length coding algorithm of AVS and H.264 mainly

lies in the process of the residual coefficient. So in the

design of the entropy decoding module, CA-2D-VLC

module and CAVLC module share the stream buffer and

shifter as well as the Exp-colomb decoding module. And

the CABAC module reuses the stream buffer and shifter.

Finally, a controller is used to control each module to work

orderly.

III. HARDWARE DESIGN

According to the analysis of algorithms, this document

designs an entropy decoding module compatible with AVS

and H.264 standard. The hardware structure is shown in

Fig.1. The module consists of seven parts: decoding

controller, Dual-port RAM, stream buffer and shifter,

Exp-colomb decoding module, CA-2D-VLC decoding

module, CAVLC decoding module and CABAC decoder

module.

Dual-port RAM can be regarded as a cache between

entropy decoding module and external input, which stores

the compressed video input code flow after removing filling

bits. It outputs 32-bit corresponding code stream to the

stream buffer and shifter according to the reading address

coming from the entropy decoding module.

Stream buffer and shifter stores 64-bit unsolved code stream,

and it removes code words having been decoded and

outputs unsolved code stream according to the code length

information from the code length accumulator. What’s more,

it can load new stream from the RAM according to the

loading signal from the code length accumulator.

Exp-colomb decoding module completes Exp-colomb

decoding of the code flow to get the value of CodeNum,

and gets corresponding syntax elements by mapping

CodeNum. When decoding residual coefficients of AVS,

CA-2D-VLC decoding module achieves 2-d variable length

decoding according to CodeNum from Exp-colomb

decoding module, and outputs (Run, Level), and then gives

residual coefficients through inversely scanning. When

decoding stream of H.264, if entropy decoding mode is 0,

then enable CAVLC decoding module and decode residual

coefficients. CAVLC decoding

Fig.1 The hardware structure of entropy decoding module

module directly gets unsolved code words from the stream

buffer and shifter to work out the syntax elements such as

coeff_token, level, runbefore and so on. Then the syntax

elements are reordered and the residual coefficients are

regained. When decoding stream of H.264, if entropy

decoding mode is 1, use the CABAC decoding module to

decode the syntax elements in slice layer and below it and

residual coefficients. The controller is a Finite State

Machine (FSM), which is used to regulate operation of the

decoder orderly. According to the difference of the

decoding video stream, it is needed to input the signal of

mode_choose to the controller to choose the mode of the

entropy decoding module, and make the entropy decoding

module choose the corresponding decoding pathway and

hang free decoding module to reduce power consumption.

3

A. Stream Buffer and Shifter

Stream buffer and shifter is used to be the cache of the

code stream loaded from the dual-port RAM, and output

unsolved codes for subsequent decoding module through

the shift operation[2]. In order to support the mixing length

decoding, this document adopts the method of multiple

parallel decoding. Through applying the stream buffer and

shifter, 32-bit stream is read at a time, and each time one

length of the stream is decoded, which improves the speed

of the decoding. The structure of the module is shown in

Fig.2.

Fig.2 The hardware structure of stream buffer and shifter

This module contains two 32-bit registers R0 and R1,

which together make up the 64-bit input of Left Barrel

Shifter (LBS). LBS is accomplished by combinational logic,

and after it receives the address pc from the code

length accumulator, it makes the 64-bit codes input

move left pc-bit instantly to generate 32-bit output data new.

When the signal load from code length accumulator is high,

it indicates that total length of the code words having been

decoded is out of 32 bits and 32-bit codes new must be read

from the code stream. When the clock edge is effective, R0

stores the 32-bit codes new, and R1 receives the original

data from R0 and that is the new data input of LBS. And at

the same time, the code length accumulator begins a new

round of accumulation, and the internal pc[4:0] accumulates

code length consumed again and again. When the pc[4:0] is

beyond 31, the code length accumulator will produce carry

signal which makes the signal load valid, and that illustrates

that more than 31-bit codes have been decoded and new

stream must be input. Signal load must be input the module

generating RAM address to generate reading address

ram_rd_addr for RAM. Whenever the signal load is

effective, ram_rd_addr adds 1 and is sent to the dual- port

RAM, which makes the RAM output new code flow for

updating R0 next time.

In this document, the stream buffer and shifter joins a

data selector MUX in order to select the type of the current

code length consumed. According to decoding state signal

decode_state, it chooses the current code length consumed

in the decoding from code length of fixed-length decoding,

Exp-colomb decoding, CAVLC decoding and CABAC

decoding. So each module can use this module.

B. Exp-colomb Decoding Module

In this document, the reuse of Exp-colomb decoding

module, which can be used in decoding of AVS and H.264,

is adopted, so the resource consumed of the circuit is

reduced. The hardware structure of this module is shown in

Fig.3.

Fig.3 The hardware structure of Exp-colomb decoding module

The first number 1 detector is for detecting the number of

consecutive zeros in the prefix of the input stream. It

consists of an or gate, and an 8:3 priority encoder and an

data selector. It can be used in Exp-colomb decoding

module, looking up tables in CAVLC decoding module and

normalization in CABAC decoding module.

Because the number of zeros in front of the first '1' is not

more than 15, first 16 bits of the 32-bit stream are only

needed to be input to the first number 1 detector. The first

number 1 detector can detect the number of zeros

leadingZeroBits in the prefix. Then according to the

formula (2), leadingZeroBits, which is moved left one

bit, plus the order k of Exp-colomb code and 1 is the length

of the Exp-colomb decoding length. But, the analysis found

that the relationship among the binary size of Exp-colomb

code CodeValue and leadingZerosBits and k is as follows.

2

_ ()

leadingZeroBits kCodeValue

read bits leadingZeros k

(3)

Improving formula (1), the relationship between

CodeNum and CodeValue is as follows.

2kCodeNum CodeValue (4)

Formula (4) illustrates that the binary size of Exp-colomb

code minus 2k
is equal to CodeNum, so we simplify the

calculation of CodeNum according to this relationship so as

to simplify the design. Deliver the 32-bit input code flow

into right barrel shifter(RBS) and move it right 32-length

bits, and then codevalue is obtained. The codevalue minus
2k

is equal to CodeNum. Also the design joins a code

length data selector which makes this structure can support

fixed-length code decoding. That’s to say, when

decode_state is in the condition of fixed_decoding, the

length of fixed-length code is input to RBS and then the

input stream is moved directly, and fixed-length code can be

decoded.

After decoding the codenum, the syntax elements of

4

ue(v), se(v), me(v) and ce(v) is obtained by mapping

codenum .

C. CA-2D-VLC Decoding Module

CA-2D-VLC decoding module can decode residual

coefficients of AVS. And it gets residual data (run level)

according to the code value codenum after Exp-colomb

decoding. In this document, the index of look-up tables and

the tables are optimized and integrated, and adaptive

pipelining technology is introduced to improve the

decoding speed. The hardware structure of this module is

shown in Fig.4.

Fig.4 The hardware structure of CA-2D-VLC decoding module

In this structure, first input codenum into escaping code

judging unit. If codenum is less than 59, there is no need to

decode escaping code, and the syntax element

trans_coefficient equals codenum. And then current used

table number tablenum generated by trans_coefficient and

switching unit of the code table number is input into the

generating units of look-up table index, and a look-up table

index is generated to look up the look-up logic RunLevel

and the value of run and level is obtained. If codenum is

greater than or equal to 59, the escaping code decoding is

needed to be introduced. The first codenum is assigned to

the syntax elements trans_coefficient. In escaping code

judging unit, calculate run = (trans_coefficient-59) / 2 as the

output run. And then run and tablenum are input to

generating unit of look-up table index to generate the index

of look-up logic Refabslevel, and look-up logic Refabslevel

is searched to get refabslevel. The next codenum is assigned

to the syntax elements escape_level_diff and then level is

worked out by the refabslevel and escape_level_diff. If

trans_coefficient is odd, then the level is equal to

-(refabslevel +escape_level_diff), otherwise the level is

equal to (refabslevel+ escape_level_diff).

When decoding run and level, there are 19 variable

length code tables that you need search. In the document,

the index of the look-up code tables is optimized, and

combinational logic is used to search the look-up code

tables. That’s to say, the look-up logic of Refabslevel and

RunLevel is designed to combinational logic circuit, and

look-up index composed by the trans_coefficient and

tablenum is input to the combinational logic circuit to get

the value of run, level and refabslevel.

In addition, CA-2D-VLC decoding module uses the

adaptive pipelining technique. Considering the principle of

balance and the need of decoding process, the variable

length decoding pipeline is divided into the following four

stages: the output of stream buffer and shifter, Exp-colomb

decoding, escaping code decoding and RunLevel decoding

output. Main arithmetic unit of the output of stream buffer

and shifter is the stream buffer and shifter, completing

buffering the output stream from RAM and moving the

output stream to be decoded. Main arithmetic unit of

Exp-colomb decoding pipelinig segment is Exp-colomb

decoding modules, achieving the function of decoding

Exp-colomb codes. Main arithmetic unit of escaping code

decoding pipelining segment is also Exp-colomb decoding

module, working out escaping code escape_level_diff. Main

arithmetic unit of RunLevel decoding output pipelining

segment is RunLevel calculation module, calculating run

and level by looking up variable length code tables of AVS.

These three arithmetic units cascade to form a complete

pipeline through register and each arithmetic unit can work

in parallel in each clock cycle, which improves the

decoding speed. The adaptive pipeline can adjust the

pipelining stages according to different code words. The

workflow of the pipeline is shown in Fig.5.

Fig.5 The workflow of the pipeline

D. CAVLC Decoding Module

CAVLC decoding module is for decoding the residual

data encoded by CAVLC in video stream of H.264. CAVLC

decoding module achieves the decoding of six kinds of

syntax elements including TotalCoeffs, TrailingOnes, the

sign trailing coefficients T1, Levels, TotalZeros and

RunBefore from the compressed bit stream from the stream

buffer and shifter. And then these syntax elements are

recombined to get the residuals coefficients. The structure

of CAVLC decoding module is shown in Fig.6.

 Fig. 6 The structure of CAVLC decoding module

5

CAVLC decoding module and other decoding module

reuse stream buffer and shifter, so the Left Barrel Shifter

(LBS) and code length accumulator in Fig.6 are not needed

to be designed again. That’s because the structure of

coefftoken, level and totalzeros in the compressed code

stream of CAVLC is similar with that of Exp-colomb code,

both adopting structure of [m consecutive 0] 1 [suffix]. So

when decoding such syntax elements, the number of zeros

in the prefix is detected by first number 1 detector, and then

shorter suffix syntax elements are decoded to get code value.

Thus in this structure, first number 1 detector in

Exp-colomb decoding module is reused. A part of the input

stream is sent to first number 1 detector to get the number

of zeros in the prefix, and another part is sent to syntax

elements decoding unit, which unites the number of zeros in

prefix to get code value. In syntax elements decoding unit,

firstly, Coefftoken decoding unit and the sign of trailing

coefficients decoding unit are used to work out the total

number of non-zero coefficients totalcoeffs and the number

of trailing coefficients trailingones, which are sent to the

subsequent decoding unit, and subsequently Level decoding

unit repeatedly works (totalcoeffs- trailingones) times to

have the value of non-zero coefficients except the trailing

coefficients Level. Then TotalZeros decoding unit is

enabled to work out the total number of zeros before the last

non-zero coefficient totalzeros with entrance parameter

totalcoeff. Finally RunBefore decoding unit is motivated for

the number of zeros before non-zero coefficients.

Restructuring module works out the residual coefficients

according to the syntax elements above. CAVLC decoding

controller consists of a FSM, and distributes decoding task

for each unit in different decoding cycles and makes each

unit run orderly to rebuild residual coefficients.

Combinational logic is adopted to look up tables in this

module, which reduces the access to the memory and saves

resources. Factor of priority is took into account when

combinational mapping circuit is designed. So code tables

are divided into several sub-tables according to the

frequency of the codes and the similarity of the suffix of the

codes. The smaller the number of sub-tables is, the higher

the priority is. When designing combinational circuit, give

higher priority to these tables. So when combinational logic

circuit searches tables, in most cases tables having higher

priority will only be searched, having not to search all of

the mapping tables. Consequently, the efficiency of looking

up tables is improved, and the power consumption is

reduced. Level decoding module is implemented with

arithmetic operation, and achieves the decoding of the

prefix and suffix in a decoding clock cycles, and the value

of a Level can be got each clock cycle. Restructuring

module starts to work after working out first runbefore, and

finally (i_level-i_run) clock cycles are only consumed to

rebuild residual data, which saves a lot of decoding clock

cycles.

E. CABAC Decoding Module

When entropy decoding mode of H.264 is 1, syntax

elements in slice layer and below it and residual data apply

CABAC decoding module. The module receives the

compressed code stream from the stream buffer and shifter,

and does arithmetic decoding to get every bit of the syntax

elements, and finally applies the anti-binary method to get

the value of the syntax elements. The hardware structure of

the module is shown in Fig.7.

Fig.7 The hardware structure of CABAC decoding module

The CABAC decoding module consists of ROM of

initialization parameters, RAM of context model, the

initialization calculation and renormalization unit,

arithmetic decoding operation module, anti-binary unit and

CABAC decoding controller. Stream buffer and shifter is

shared with the CA-2D-VLC decoding module and CAVLC

decoding module, which is not redesigned.

In the process of CABAC decoding, the context model

will be updated after the completion of decoding each bit.

For the realization of decoding one bit per clock cycle, this

article hopes that the context model of next bit to be

decoded is read while writing a new context model to RAM.

Therefore, different addresses are needed to be read and

written in the same clock cycle. Based on the reason above,

dual-port RAM is used, which meets the needs of both

reading and writing RAM.

Combinational logic circuit is used in renormalization

module in order to avoid occupying clock cycles. Context

modeling, arithmetic decoding operation and anti-binary

module can be compressed into pipelining mode, so that the

three stages can run in parallel and a bit of syntax elements

can be decoded each clock cycle, which greatly improves

the decoding speed.

IV. RESULT AND VERIFICATION

In this document, we used Verilog HDL to realize RTL

design of each functional module in entropy decoding

module in dual-mode video decoder chip, and did synthesis

and simulation on Altera's FPGA. The results of synthesis

indicated that the logic resource of entropy decoding

module we designed was small. Report of synthesis is

shown in Fig.8. After achieving synthesis, simulation was

6

done respectively. The results of simulation of CA-2D-VLC,

CAVLC and CABAC decoding module are shown in Fig.9,

Fig.11 and Fig.12.

Fig.8. Report of synthesis

Fig.9 Simulation of CA-2D-VLC module

We then added the entropy decoding module designed as

a peripheral component to the SOPC. The structure

designed in SOPC is shown in Fig.10. Then, generate the

hardware of the design in SOPC. The hardware platform

portion of the work is shown in Fig.13.

Fig .10 SOPC Builder interface

Fig.11 Simulation of CAVLC module Fig.12 Simulation of CAVLC module

7

Fig.13 Hardware platform portion generated in Quartus II

Combination of hardware and software was applied to

complete the video encoding and decoding. Finally, after

assigning pins and generating .sof file, the overall structure

of Fig.13 was downloaded to the Altera Cyclone II

EP2C35F672C6, and the stream foreman.yuv was input to

this structure. The system implemented based on the

EP2C35F672C6 of DE-2 development board is in Fig.14.

Compared with the output results of reference software

RM52j of AVS and JM9.4 of H.264, the result of this

overall structure shows that the entropy decoding module in

this document accomplishes decoding the video stream. The

results are shown in Fig.15 and Fig.16.

Fig.14 The system implemented based on the EP2C35F672C6 of DE-2

development board

Fig.15 The output results of the reference software

Fig.16 The output results of the overall structure designed in this document

V. CONCLUSIONS

In this document, we designed the entropy decoding

module in dual-mode video decoder chip using FPGA, and

then embed it into SOPC. Use hardware and software to

accomplish the decoding of the video stream. The entropy

decoding module designed in hardware can achieve

decoding of video stream of 4CIF and 720p HD. It can be

used as an accelerator in decoding, which can greatly

improve the decoding speed.

REFERENCES

[1] Bin Sheng, Wen Gao, Don Xie and Di Wu. An Efficient VLSI

Architecture of VLD for AVS HDTV Decoder[J].IEEE Transactions on

Consumer Electronics, May.2006:696-701.

[2] Liu Wei, Yong-en Chen. VLD Design for AVS Video

Decoder[C].Second International Workshop on Knowledge Discovery

and Data Mining.Jan.,2009:648-655.

[3] GB/T20090.2-2006.Information technology Advanced decoding of

audio and video Part2: video.

[4] Bi Houjie, Wang Jian. A new generation of video compression coding

standard:H.264/AVC

[5] Tingan Lin, Shengzen Wang, TSUMING Liu. An H.264/AVCdecoder

with 4*4 block level pipeline[C]. IEEE Int Symp Circuit Syst, 2005:

1810-1813.

[6] Iain E. G. Richardson. H.264/MPEG-4 Part 10 White Paper: Context

Adaptive Binary Arithmetic Coding. 2002.

[7] Ke Zhang, XiaoYang Wu, Lu Yu. An Area-efficient VLSI

Implementation of CA-2D-VLC Decoder for AVS [J]. ISCAS 2007,

May 2007.

[8] Wu Di, Gao Wen, Hu Mingzeng, Ji Zhenzhou. A VLSI architecture

design of CAVLC decoder. Proc. IEEE int. Conf. ASIC. Oct.

2003:692-695.

