

Design and Implementation of Load-Balanced

Multipath Self-routing Switching System
Qian Zhan, Zhi-Pu Zhu, Li Ma, and Hui Li

*
, Member, IEEE

School of Electronic and Computer Engineering, Peking University

Shenzhen Eng. Lab of Converged Networks Technology; Shenzhen Key Lab of Cloud Computing Tech. & App

Shenzhen, China

zhanqian0218@gmail.com

*corresponding author: huilihuge@163.com

Abstract— In order to ensure high quality of service (QoS) for

Next Generation Network (NGN), we construct a new Load-

Balanced Multipath Self-routing Switching Structure which

consists of the same two multipath self-routing fabrics. The result

of simulation is inspiring for achieving 100% throughput and no

delay or jitter. For this reason, we start on the implementation

on an Altera StratixIV FPGA. And the whole FPGA system is

designed into two collaborative components: the UDP system and

the register system. With two algorithms around input and

output two stages, incoming traffic is transformed into

uniformity and then to their final destinations. During the later

period debugging, software simulation platform and automated

test platform are built, which contribute to our work very much.

At last, we carry out several experiments to test and verify our

system. The report of the test result accords with what we

expected.

Keywords— Load-Balanced; Multipath Self-routing Switching

Fabric; FPGA; UDP; Register

I. INTRODUCTION

In recent years, with a rapid increase in the number of

Internet users, the network scale expands unceasingly. Rich

Internet applications, especially the popularity of online video

services [1], contribute to the network congestion that almost

everyone experienced. This phenomenon puts forward a huge

challenge to the vital component, the router. Actually, the

router has become a significant bottleneck in the development

of the network. On the other hand, on the basis of TCP/IP, the

network layer of Internet only provides the best effort delivery

rather than the commitment for quality of service (QoS) [2].

Therefore, looking for a new switching system which is more

efficient and supports QoS is a key research and development

point.

In order to improve the performance of routers and reduce

implementation costs, various kinds of solutions are proposed.

The Load-Balanced Birkhoff-von Neumann switch [3]

interests us for that it can achieve 100% throughput with most

network traffic by using a balancer to equalize input flows.

However, the structure does not maintain the order of packets

after switching and the average queuing delay increases

linearly with the number of ports. Obviously, it is not suitable

for large scale extension. On the contrary, another structure

we focus on, the Banyan-based Quasi-Circuit Switch [4] has

low component complexity O (Nlog2N, N is the number of

ports) and the ability of self-routing and distributed processing.

However, because of the blocking feature, QoS is not ensured.

Based on the advantages and disadvantages of the above

two kinds of structures, we propose a Load-Balanced

Multipath Self-routing Switching Structure by connecting two

multipath self-routing fabrics in series. The first one acts as a

load-balancer and the other one severs as a self-routing

forwarder. Concentrators, which are made up by basic sorting

units, are sorted by the arrangement rules of Multistage

Interconnection Network to construct the whole structure.

Theoretical analysis and NS2 simulation indicate that our

model can obtain 100% throughput under normal

circumstances and easy to be expanded in size [5].

Further, we translate the theoretical model into a modular

FPGA system which consists of two main parts: the UDP

system and the register system. And then, the whole system

has been implemented on an Altera StratixIV FPGA. In the

testing phase, our system works steadily and efficiently and

meets the basic requirements of QoS applications.

The rest of the paper is organized as follows. Theoretical

basis and modeling are introduced in Section II. Section III

describes the system design and implementation based on

FPGA. Section IV presents system testing with real network

traffic, and then Section V summarizes the whole work.

II. THEORETICAL BASIS AND MODELING

The overall switching system consists of load balancing

stage, routing switching stage and some auxiliary modules.

Both of the two main components are structured by 2×2

sorting units which are based on the theory of algebraic

distributive lattices and arranged in certain order. In order to

meet the performance requirement and make the price to the

minimum, not only have we designed a new network structure

according to the basic function of the sorting unit, but also a

perfect in-band signaling system and the matched control

mechanism.

A. 2× 2 Basic Sorting Unit

The 2×2 basic sorting unit is a sequential logic circuit, with

two inputs and two outputs (respectively called 0/1 port). As

shown in figure 1 (a) and (b), if conflict-free, it has two states:

2

Bar and Cross [6]. When both inputs contend for the same

output, sorting unit will randomly select one of them as the

winner and send its packets through the unit; the loser's data

will be dropped or misrouted (see figure 1(c)).

00

11

Input

0

1

0

1

0

1

0

1

Output

(a).BAR (b).CROSS (c).CONFLICT

Input InputOutput Output

Fig. 1 2×2 basic sorting unit and its states

In-band control signalling can be used to set the connection

state of the unit as list in Table I. The unit compares the two-

bit in-band signalling A and D of each packet to make the

routing decision. The first bit A indicates the activity of an

input packet. When A equals 1, it means an active packet is

arriving. The second bit D indicates the destination of an input

packet. Thus, 10, 11, 00/01 respectively represent the packet

which is going to output-0, the packet which is going to

output-1 and the dummy packet. Under the synchronous clock,

2×2 basic sorting units act upon the rule: 10<00/01<11, which

can also be used in sorting concentrators.

TABLE I. TWO-BIT IN-BAND SIGNALING CONTROL MECHANISM.

Connection State

Input-1 Control Signaling:

A1D1

10 00/01 11

Input-0 Control

Signaling:

A0D0

10 CONF a BAR BAR

00/01 CROSS EITHER BAR

11 CROSS CROSS CONF

a. When CONF (CONFLICT), priority decides the state.

According to the theory of algebraic distributive lattices [7],

we can further define Ωroute = {0-bound, 1-bound, idle},

namely, 0-bound = 10, 1-bound =11, idle = 00/01. So, the

former 10<00/01< 11 turns into 0-bound< idle<1-bound. If it

is conflict, the choice of BAR or CROSS depends on a

specific application such as the priority.

B. Inter-stage Bit-permuting Model

An N×N (N=2n) routing network is a Multistage

Interconnection Network (MIN) built by 2×2 basic sorting

units. By using first stage permutation σ0, inter-stage

permutation σ1, σ2 … σ(n-1) and last stage permutation σn, the

network can be represented as [σ0: σ1: σ2:…: σ(n-1): σn]. Each

colon symbolizes a stage of 2x2 units. We can define a Trace

sequence and a Guide sequence [8] as follows:

 Tk=(σ0σ1…σK-1)
(-1)(n) 1≤k≤n;

 Gk=(σ0σ1…σK-1)(n) 1≤k≤n;

Trace and guide can find a unique route from input to

output. As Fig. 2 shows, for the network [: (43): (42) (31):

(43):], the Trace is (4, 3, 2, 1) and the Guide is (1, 2, 3, 4).

Then, origination address bits I1I2I3I4 one by one are rotated to

the rightmost bit position at the successive stages and are

replaced successively by bits O1O2O3O4. The destination

address bits O1O2O3O4 are specified by Trace or Guide.

X(43) X (42) X(43)

X (43

Stage- 1

switching

Stage- 2

switching

X(43)

Stage- 3

switching

Stage- 4

switching

I1I2I3I4 I1I2I3 O1 I1I2 O1I3 I1I2 O1O2 O1O2 1I2 O1O2 O3 O1 O2 O3I1 O1 O2O3O4

X (31)

X (42) X (31)

I 1I

Fig. 2 an example of routing network

C. Multipath Self-routing Switching Structure

Multipath Self-routing Switching Structure (MSSS) [9] is

an innovative structure, which combines Multistage

Interconnection Network (MIN) with concentrators.

The MIN described in section II B is constructed by plenty

of basic sorting units, which are divided into several stages.

Each unit works at the state of CROSS or BAR by its rule.

This kind of network has the advantages of being highly

modular and having low device complexity O (Nlog2N). With

the help of Trace and Guide, there is a unique route from an

input to any output. For this reason, it avoids the scheduling at

each time slot and has the ability to be massively expanded.

To construct MSSS, we substitute each basic sorting unit

for 2G-to-G concentrator and replace the single cable with a

bundle of cables. Fig. 3 illustrates the multipath structure

(N=128 M=16 and G=8) which is based on a 16×16 routing

network. G shows the size of the group, M is the number of

the group and N=M×G indicates the whole number of

input/output ports (G=2g, M=2m, N=2n, n=m+g, n, m, g are

positive integers). Obviously, we have replaced the basic

sorting units in Fig. 2 by 16 to 8 concentrators.

3

G=8

G=8 Concentrator

 Fig. 3 Multipath Self-routing Switching Structure (M=16, G=8)

Acting as an indispensable part of MSSS, the 2G-to-G

concentrator [10] separates the larger G signals of the whole

2G inputs from the other G signals. Finally, it forms two

output groups. (The output order within each group is

arbitrary.) Intuitively, a 2G-to-G concentrator can be built by

two G×G sorting networks for arbitrary 0-1 sequence, each of

which is followed by a G-half cleaner. Address arbitrators are

attached to the whole outputs to clear misrouted packets. All

the above-mentioned sorting networks, half cleaners and

arbitrators are constructed by basic sorting units.

D. Load-Balanced Multipath Self-routing Switching Structure

In the project, the size of arriving packets is random. And

furthermore, time is slotted and synchronized so that packets

can be transmitted within a time slot for each input line of the

structure.

As shown in Fig. 4, two MSSSs are used in series to

compose the whole structure, with the VOGQs (Virtual

Output Group Queues) [5] ahead of the first fabric and the

assemblages at the end of the second fabric. Actually, by

using simple algorithms and small buffers, the first stage

fabric serves as a load-balancer, which spread any pattern of

incoming traffic which is to be distributed uniformly to all the

ingress ports of the second stage fabric. Then the second stage

fabric forwards the data in a self-routing manner to their final

destinations. Every G inputs/outputs are bundled into an

input/output group. Thus N input lines form M groups on the

input side (N=M×G), so is the output side. To ease

presentation, IG/OG denotes input/output group, and MG

represents a line group between the two stages. In this project,

there are 4 IGs, 4 MGs and 4 OGs. Each group has 8 lines. .

 VOGQs are responsible for storing packets and making

data ready for IGs. We use VOGQ (i,j) to denote the VOGQ

whose packets are destined for OGj from IGi.

IG

00 OG

00

OG

01

OG

10

OG

11

VOGQs
Load-Balancer Self-routing Forwarder

Assemblage

.

.

.

m(t)

n(t)

MG OG IG payload OG IG payload IG payload

Detailled cell formats in the switching process

MG-middle group

address

OG-output

group address

IG-input group

address

MG

00

IG

01

IG

10

IG

11

MG

01

MG

10

MG

11

Fig. 4 Load-Balance Multipath Self-routing Switching Structure

Generally, for the system we proposed, the processing of

arriving packets at each time slot is composed by several

sequential phases which are shown as follows. In addition, to

achieve maximum processing speed, we should use pipeline

structure as far as possible.

1) Preparatory phase: New packets arrive during this

phase. With checking and judging, the packet which is

destined for OGj from IGi, is stored into VOGQ (i,j).

2) Splitting phase: Packets in VOGQs are split into cells

according to Algorithm 1. And each cell will be added

with some certain packet headers.

3) Balancing phase: With the help of MG tags, cells will

be routed to every middle group simultaneously and

uniformly. When the cells reach the middle groups,

MG tags will be dropped.

4) Routing phase: Cells are further to their final

destinations directed by OG tags. When they get

through the second stage fabric, a self-routing

forwarder, the OG tags will be discarded.

5) Assembling phase: Cells which arrive simultaneously

are to be assembled to original packets according to

Algorithm 2. When completed, packets will be output

from the OGs.

Algorithm 1: For each input group, packets stored in

VOGQs should be split into cells with equal length during

splitting phase. Furthermore, we add MG tags, OG tags, IG

tags and some other control messages ahead of each cell. The

MG tags are set artificially. For example, a packet is split into

five cells and their respective MG tags should be 0, 1, 2, 3, 0,

orderly. If the following packet can be split into three cells,

the tags will be 1, 2 and 3. The rule is also suitable for other

various packets.

Algorithm 2: For each output group, cells with the same

IG address are assembled during assembling phase. IG tags,

sequence numbers and flags of the last cells will help us to

reorganize the scrambled cells. For example, we get a few of

cells in OG address 01. Some of them have the same IG tag 00

and the sequence numbers 3,2,4,1. By the way, the cell with

sequence number 4 is marked with the trailing flag. The others

4

own IG tag 10 and the sequence numbers 3, 2, 1, but no cell

has the trailing flag. By now, we can easily get the packet

which is from IG 00 by connecting the cells together in the

order 1,2,3,4. For the packet from IG 10, we still need to wait

for the last cell to arrive.

As Algorithm 1 is introduced, some extra bytes are added at

the same time, like the tags, flags and so on. Now, we try to

analyse the extra overhead of our theoretical model. In the

system, the standard size of a cell is 128Byte and the header

of a cell has 8Byte additional control information. For a

1000Byte packet (1000=7×128+104), it will be split into eight

cells and the last cell has only 104 bytes. To keep the same

size, 24Byte invalid information should be padded to the last

cell. Consequently, all the overhead is 8×8+24=88Byte (8.6%).

The calculation above is just for the 1000Byte packet, and

generally, different sizes of packets would be split into

different numbers of cells. Besides, various last cells may

have diverse numbers of padding bytes. Considering that the

size of a standard MAC frame ranges from 64Byte to

1518Byte, the worst case appears when the packet size is

1409Byte (1409=11×128+1) and the extra overhead is

11×8+127=215Byte (14%). When a 128Byte packet arrives,

we would be happy for the extra overhead only occupies 8

bytes (0.0625%). In practical applications, the extra overhead

is always acceptable for the reason of statistical average.

III. SYETEM DESIGN AND IMPLEMENTATION BASED ON

FPGA

We use Verilog HDL to carry on the main design and Tcl

script language to build an operating platform for the register

system. Functional simulation is also an important part, which

is implemented by Perl and Makefile. Perl can be used for

generating different kinds of packets and Makefile usually for

simulation platform.

A. the Overall Architecture of the System

The whole system is implemented on an Altera StratixIV

FPGA, with a Marvell 88E1111 PHY chip being used for

physical layer. The TSE (Triple-Speed Ethernet) IP core,

interacted with the PHY chip through RGMII interface,

provides standard Ethernet frames.

We divide the system into two main parts, the user data

path (UDP) system (There are the same four UDP systems in

the whole system, each of which servers a group of MSSS and

we just need to introduce one of them in the paper.) and the

register system. They are independent structurally and

interrelated functionally. The UDP system is responsible for

data processing and cell switching with many sub-modules,

FSMs (finite-state machines) and FIFOs in it. The data flow is

shown as the dark thick arrows in Fig. 5. In order to facilitate

debugging, we have designed the register system to monitor

signals and states in UDP in real-time. Its data flow is shown

as the light-coloured thick arrows in Fig. 5.

qsys_top.v

qsys_clk

（PLL）

synchronizer

qsys_full_

system.v

（Qsys）

qsys_full_system.v（Qsys）

TSE_IP_core_0PHY_0

TSE_IP_core_1PHY_1

TSE_IP_core_2PHY_2

TSE_IP_core_3PHY_3

sgmii_

mac_

adapter

.v

qsys_udp.v

qsys_udp.v

udp_reg_if.v

(the interface to

the Avalon bus)

user_data_path_.v

Avalon-bus

lpm_lookup

_wrapper

lpm_lookup

_0

lpm_lookup

_1

lpm_lookup

_2

lpm_lookup

_3

Generic

_regs_0

user_data_path.v

splitter

_wrapper

splitter

0--3

Generic

_regs_1

arbiter

_wrapper

arbiter

_0

Generic

_regs_2

self_routing_fowarder

_warrper

Generic_

regs_4

assemblage

_wrapper

packet_assemble_

0

packet_assemble_

1

packet_assemble_

2

packet_assemble_

3

Generic_

regs_5

udp_reg_master

……

splitter

4--7

splitter

8--11

splitter

12--15

arbiter

_1

arbiter

_2

arbiter

_3

load-balancer

_wrapper

Generic_

regs_3

Fig. 5 the overall architecture of the system

Fig. 5 describes the overall architecture of the system and it

contains detailed information of ever hierarchy. At the top, the

phase-locked loop (PLL) provides high-quality clock signal

for the entire system and the synchronizer can be used to reset

the system. Qsys_full_system consists of four ISE IP cores,

sgmii_mac_adapter and qsys_udp. The latter two parts are

fully designed by us. Qsys_udp includes udp_reg_if and

user_data_path. Udp_reg_if is the interface between the

Avalon bus and registers. User_data_path is the most

complicated one, which covers seven main modules. They are

lpm_lookup_wrapper, splitter_wrapper, arbiter_wrapper, load-

balancer_wrapper, self-routing_forwarder_wrapper,

assemblage_wrapper and udp_reg_master. The first six

modules own their respective sub-modules and the same

register generic_reg. Udp_reg_master control all the registers

below and it connects to udp_reg_if.

Lastly, the logic utilization is 32% according to the

compilation report generated by Quartus II 11.0.

B. Design and Analysis of User Data Path System

Packets enter into the system through the RJ45 network

port firstly. And after being processed in physical layer by

PHY chip, they will be sent to the UDP system, which is the

major part of data processing. There are four main functions

app:ds:physical
app:ds:layer

5

in UDP. First of all, we can extract necessary information

from packets or cells, such as the packet length, priority and

the target address, etc. Second, by utilizing the information we

extract, the UDP system generates various packet headers,

which will be very useful to assist the data processing. Third,

it achieves load balancing and self routing by constructing the

switching fabric. At last, it completes the assembling of the

cells.

The left part of Fig. 6 gives us a full view of the process.

The solid arrows indicate the direction of data flow. We can

see that input packets pass through nine sub-modules (not

including PHY) in turn and get back to PHY.

The functions of each sub-module are as follows.

1) Sgmii_ethernet: It is an interface module between the

UDP system and the external PHY chip. Mainly

constructed by Altera Triple-Speed Ethernet (TSE) IP

cores, it provides standard Ethernet frames.

2) Rx_queue: This sub-module accepts frames, extracts

information and generates the splitting header. The

information is important for Splitter and will be kept

until Assemblage.

3) Lpm_lookup: It extracts the information of destination

address and priority, which form the LPM header for

Self-routing Forwarder.

4) Splitter: For efficiency and easiness of implementation,

the following sub-modules are designed based on cells.

So, the Splitter will be a key sub-module. It splits each

packet into several cells and generates three kinds of

headers, the load balancing header for Load balancer,

the self-routing header for Self-routing Forwarder and

the assembling header for assemblage.

5) Arbiter: As we know, the group size of MSSS we

proposed is G=8. Thus, cells should be placed as a

group of eight lines. The size of data on each line is

10bit (8 bits for payload and 2 bits for a control signal).

This is what Arbiter do.

6) Load-balancer: The structure is the same as MSSS. It

transforms the incoming traffic into uniformity.

7) Self-routing Forwarder: It is also a MSSS. Cells switch

here and then go to their final destinations.

8) Assemblage: After switching, groups of cells arrive at

every time slot. Assemblage assembles them back to

standard Ethernet frames and generates the starting

index header, which is just to show the very beginning

of each frame.

9) Tx_queue: It contains some memory buffers to cache

the frames and then sends them back to Sgmii_ethernet.

 DATA(8)
…… 8 bit
Payload 8 bit
…… 8 bit

Lpm_

lookup

 DATA(8) CTRL(2)
0000_0000 8 bit 11
…… 8 bit 00
Payload 8 bit 00
…… 8 bit 00
Eop 8 bit 10

6

 DATA(8) CTRL(2)
Dst_port 4 bit 11
Tos 4 bit
Src_port 4 bit 01
Cell_len_hi 4 bit
Cell_len_lo 7 bit 01
Last_cell_flag 1 bit
FUll_cell_num 5 bit 01
Last_cell_pad_hi 3 bit
Last_cell_pad_lo 8 bit 01
…… 8 bit 00
Payload 8 bit 00
…… 8 bit 00
Eop 8 bit 10

 DATA(8) CTRL(2)
Src_port 4 bit 11
Cell_len_hi 4 bit
Cell_len_lo 7 bit 01
Last_cell_flag 1 bit
FUll_cell_num 5 bit 01
Last_cell_pad_hi 3 bit
Last_cEll_pad_lo 8 bit 01
…… 8 bit 00
Payload 8 bit 00
…… 8 bit 00
Eop 8 bit 10

 DATA(8) CTRL(2)
Lbs_active_mid 1 bit 11
Lbs_dst_mid 3 bit
Lbs_priority_mid 4 bit
Lbs_active 1 bit 01
Lbs_dst 3 bit
Lbs_priority 4 bit
Lbs_ig 4 bit 01
Lbs_nog_hi 4 bit
Lbs_nog_lo 1 bit 01
Lbs_noc 6 bit
Lbs_eop 1 bit
Src_port 4 bit 01
Cell_len_hi 4 bit
Cell_len_lo 7 bit 01
Dummy_cell_flag 1 bit
Full_payload_cell_num 5 bit 01
Dummy_cell_pad_zeros_hi 3 bit
Dummy_cell_pad_zeros_lo 8 bit 01
…… 8 bit 00
Payload 8 bit 00
…… 8 bit 00
Eoc 8 bit 10

Assemblage

Self-routing

Forwarder

Splitter

Rx_queueTx_queue

Sgmii_ethernet

PHY

5

3

2

1

1

4

Load_balancer

Arbiter

Fig. 6 data processing and data format in UDP

The right part of Fig. 6 pointed by dotted arrows describes

the specific data format in each sub-module. Moreover, as

shown in the right part, the standard size of data in UDP is

8bit. After going across Rx_queue, splitter_header is produced

along with the extra added CTRL signal. The 2bit CTRL

signal will be transmitted with data in parallel to assist data

identification and processing. The signal “11” signifies that

the concurrent data is the first byte of a fresh new packet or

cell. And “01” represents the various kinds of headers we

generate. “00”shows the payload data and “10” tells us the

end of a packet or cell.

To sum up, the UDP system extracts the information from

incoming frames, and then generates six kinds of headers

which are attached in front of the former frames. We use

labels “1”, “2”, “3”, “4”, “5”, “6” to represent splitting header,

LPM header, assembling header, self-routing header, load

balancing header and starting label header, respectively.

6

1) Splitting header: It is created by Rx_queue and

contains 4 bytes information. Src_port is the source

address of the current frame. The 4bit signal can

represent 16 ports, but the group size of our system is

M=4. Obviously, it is convenient for scale expansion in

the future. The sum of cell_len_hi and cell_len_lo is

11bit, which indicates the standard length of the cell.

We set them 2`b0001 and 7`b000_0000, meaning

128Byte. Last_cell_flag indicates whether the current

frame can be split into a certain number of cells exactly.

Set to high, the signal means that the size of the packet

isn`t an integral multiple of 128Byte. Thus the last cell

should be padded some bytes to keep the same length.

Then, last_cell_pad_hi and last_cell_pad_lo show the

number of bytes to be padded. Finally, signal

full_cell_num is the number of complete cells.

2) Lpm header: Compared with others, it`s a simple one

for containing only one byte information. Dst_port is

the destination port of the packet and tos means the

priority.

3) Assembling header: Generated by Splitter and carrying

important information for Assemblage, this header

helps to assemble the cells later. Lbs_ig corresponds to

the input group number IG shown in Fig. 4. We know

that Arbiter places the cells on a group of eight lines.

Lbs_nog_hi and lbs_nog_lo point out which line the

cell belongs to. We can enlarge the group size to 32

furthest. Lbs_noc is the significant serial number,

declaring the actual position of the cell in the original

packet. The last signal lbs_eop is the mark of the last

cell. We can use these signals to reassemble the cells

and specific methods are mentioned in Algorithm 2.

4) Self-routing header: It is just the output group number

OG shown in Fig. 4 and it will be dropped after passing

through Self-routing Forwarder. In fact, it is the

recoding of the Lpm header. Analogously, lbs_active

proves the cell active and lbs_dst gives the destination.

Reviewing the 2×2 basic sorting unit introduced in the

beginning, if the state is conflict, signal lbs_priority

will make the decision.

5) Load balancing header: Being similar to self-routing

header, lbs_active_mid is the significance bit and

lbs_priority_mid indicates the priority. The only

difference between the two headers is that the

destination shown by lbs_dst_mid is the middle group

number MG in Fig. 4. Load balancing header is set

according to Algorithm 1 and it will be discarded after

passing through Load-Balancer.

6) Starting label header: Being simple but necessary, it is

used to show the very beginning of the frame after

assembling.

C. Design and Functional Simulation of Key Sub-modules in

UDP

The design and function realization of a module need to

pass the test of simulation software firstly. Furthermore, by

using functional simulation, we can visually study the design

details, modify the errors and improve efficiency. Our

simulation platform is built with the help of three main tools:

Perl scripting language, Makefile scripting language and the

simulation software Modelsim.

The full name of Perl is Practical Extraction and Report

Language and it can easily manipulate numbers, texts, files,

and directories. Hence, we take advantage of it to generate

various kinds of standard Ethernet frames and some other

packets with certain headers. All the data is saved as texts as

the input of the whole system or a sub-module.

Makefie is a scripting language with the functions of

executing programs and describing their relationship. In the

project, there are four IP cores, many modules and complex

hierarchies. If we only use the graphical interface or directly

use the Modelsim command line, workload will be very huge.

Making use of the powerful tools and abundant functions

involved in Makefile, we can greatly simplify the work of

building the simulation platform.

Modelsim is famous for its friendly command-line

operating environment and high accuracy. Commands “vlib”,

“vlog”, “vsim” and “add wave” will be frequently used, which

represent “building simulation library”, “compiling”,

“simulating” and “adding waves”. With using Modelsim, all

the operations in a complex graphical interface can be

implemented through the command line and run by the script

program. After efforts, the automated simulation comes true.

Next, we will introduce the design and verification in detail

of several key modules based on the above-mentioned

platform.

1) Splitter

As shown in Fig 7, the internal structure of Splitter is

simple and intuitive. And its function is just to cut the input

variable-length packets into output equal-length cells. But in

fact, the realization of this process is not easy. Specific

“assembling header”, “self-routing header” and “load

balancing header” should be attached to the head of each cell

to insure the proper functioning of the three following sub-

modules. This attributes the success to the powerful output

state machine Out_FSM.

Out_FSM …

Splitter Payload_fifoInput Cells

…… …

Fig. 7 the design of sub-module Splitter

Fig. 8 displays the simulation waveform of Splitter, the

upper half of which shows the incoming packets. We can

distinguish them clearly with the help of signal in_wr and

signal in_ctrl. Configured by Perl, the lengths of packets in the

four rounded rectangles are 70Byte, 128Byte, 256Byte and

app:ds:above-mentioned

7

429Byte. Based on the principle of splitting, the first one

should be padded 58 bytes to reach 128Byte long, the second

one is just right a cell and the third one will be cut into two

complete cells. The fourth packet has some hurdles: the last

one of the four dissected cells needs byte stuffing. In the

second half of Fig. 8, we can see the cells and the padding

bytes 8`hee.

Fig. 8 the simulation waveform of Splitter

Fig. 9 the details of the header information

Fig. 9 describes the details of the header information.

Shown in the two rounded rectangles, input data is the output

of Lpm_lookup and it has five bytes header information.

When it outputs from Splitter, its header contains eight bytes

data: one byte for load balancing header, one byte for self-

routing header, two bytes for assembling header and four

bytes for splitter header.

2) Multi-path Self-routing Fabric

Composing Load-Balanced MSSS, both Load-Balancer and

Self-routing Forwarder are the same MSSS. So we take one

for example.

MSSS is the heart of the whole system and it consists of

plenty of concentrators which are connected as the way shown

in Fig. 3. The concentrator is constituted by 2×2 sorting units

which perform the basic operation: comparing the incoming

two cells. In the project, a total of 32 ports transmit cells

simultaneously because G equals to 8 and M equals to 4.

Fig. 10 is the simulation waveform of MSSS and the cell is

represented as the data in the circle. Shown as a column, 32

cells are dispatched collectively at every time slot. It is empty

if there is no a cell to be sent in a port. In the middle, the

width of the rounded rectangle indicates the time interval of

cell sending, which is defined as time_slot_plus. The value of

time_slot_plus is not set arbitrarily but by calculation. When

Arbiter is sending a 136Byte cell (including 8 bytes header

information), one byte will leave at every clock rising edge.

All of the ports perform the same operation at the same time.

On the opposite, Assemblage captures the cells which arrive

concurrently, one port by one port. Consequently, the process

needs enough time and enough buffers. In theory,

136×8=1088 clock cycles are necessary and we use the

number 1100 just in case. This is why the gap between two

cells owns about 8 times the width of a cell (see Fig. 10).

8

Fig. 10 the simulation waveform of MSSS

3) Assemblage

Assemblage stands in sharp contrast to what's happening in

Splitter and Fig. 11 illustrates its complicated design structure.

Three state machines FSM1, FSM2, FSM3 are responsible for

cell processing with plenty of FIFOs to store temporary data.

For the example of OG2, the assembling of cells is shown

as follows.

At the far left part of Fig. 11, cells arrive from 8 lines

simultaneously, which turn to serial cells after passing through

Cell_buffer. But these cells may come from different source

ports and they are very likely to be scrambled after switching.

The state machine FSM1 is designed for cell identification

and cell classification. By means of the assembling header, we

can readily pick out which input line the cell belongs to and

then classify the cells into Cell_fifo0 to Cell_fifo15. The most

difficult part remains to FSM2 to complete it. We use the

same four state machines to assemble every four groups of

classified cells into original data. Note that here we have no

more need for the packet header and the padding bytes. In the

last step, FSM3 outputs the packets with the attached starting

label headers from Pkt_fifos, whose situation monitored by

Token-bins.

OG2
Cell

 buffer
cells FSM1

IG0
FSM2

_1

FSM2

_2

FSM2

_3

FSM2

_4

Pkt_fifo_0

Pkt_fifo_1

Pkt_fifo_2

Pkt_fifo_3

FSM3 Output_2

0 1 2 3

Token-bins

IG1

IG2

IG3

Cell_fifo_0
Cell_fifo_1
Cell_fifo_2
Cell_fifo_3

Cell_fifo_4
Cell_fifo_5
Cell_fifo_6
Cell_fifo_7

Cell_fifo_8
Cell_fifo_9

Cell_fifo_10
Cell_fifo_11

Cell_fifo_12
Cell_fifo_13
Cell_fifo_14
Cell_fifo_15

Fig. 11 the design of sub-module Assemblage

As shown in Fig. 12, inputs are serial cells, which can be

distinguished by observing signal in_wr and signal in_ctrl.

The cell in the circle includes padding bytes, and obviously, it

is the last cell of the packet. Based on this information, we can

speculate that there is an arriving packet, which consists of

seven cells. The output waveform (shown in the rounded

rectangle) conforms to the egress rules and proves our

judgment.

9

Fig. 12 the simulation waveform of Assemblage

Clearly shown in figure 13, the first byte of the output

packet is 8`b0000_0000 and corresponding CTRL signal is

2`b11. Undoubtedly, it is the starting label header.

Fig. 13 the starting label header

D. Design and Analysis of Register System

Another major component of the Load-Balanced Multipath

Self-routing Switching Structure (Load-Balanced MSSS) is

the register system, which provides an interface to the outside

world for the UDP system. In practice, we need a mechanism

to control the operations in UDP. And when carrying on back-

end design and system debugging, we are looking forward to a

window to monitor key signals such as the state of FIFOs, the

value of counters and so on. Without register system, we can

hardly finish the following work of a big project like ours.

In summary, the register system has two main functions: on

the one hand it configures every sub-module in UDP, known

as the software register operation; on the other hand it extracts

the internal signals from sub-modules in UDP, known as the

hardware register operation. The latter is our research focus.

1) the Structure of Register System

Our register system references the pipeline architecture in

the NetFPGA program conducted by Stanford University [11].

As shown in Fig. 14, every sub-module in UDP connects with

a general register, called Generic_reg. All the general registers

and the controller Regs_master form a ring end to end. And

then it can interact with the host computer through the Avalon

bus devised by Altera. The mutual exchanges of information

of the two systems benefit from the IP core

JTAG_Avalon_Master_Bridge.

Instead of being connected in a star topology to a central

arbiter, the register interfaces of the modules are connected

together in a pipeline manner to simplify the process of adding

modules. When a new register is inserted, what we need to do

is just distributing it the exclusive address space in the

pipeline organization while the central arbiter should be

modified in the star topology.

Two kinds of registers, software register and hardware

register, constitute the generic register Generic_reg which

plays a key role. Software register can be written or read by

host PC while hardware register can only be read. The

interfaces in the system have also two types: one is for the

generic registers (signified by the light-coloured arrows in Fig.

14) and another is the interface between a sub-module in UDP

and a generic register (signified by the dark arrows in Fig. 14).

Data_bus

Splitter

Generic_

regs1

Arbiter

Generic_

regs2

Load-

Balancer

Generic_

regs3

Generic_

regs4

Assemblage

Generic_

regs5

Regs_master

Self-

routing

Forwarder

Lpm_

lookup

Generic

_regs0

Fig. 14 the whole structure of register system

When the host wants to access a register, it sends an

interrogation signal to Regs_master through the Avalon bus.

Then the general registers will pass the signal one by one. In

this case, the signal will go through all the registers but only

one could respond because of the destination information in

the signal. A register can only accept the request message

belongs to itself by checking the destination address. If valid,

it replies immediately and transmits the answers backward

until back to host.

Fig. 15 shows the internal details of the two interfaces, one

of which is for the registers and it is complicated compared

with the other one. According to the official descriptions, the

register pipeline is 32-bits wide and runs at 125 MHz. Each

module should have two pairs of ports: one for incoming

requests and one for outgoing replies. The following set of

signals is the input signals for a single module: reg_req_in,

reg_ack_in, reg_rd_wr_L_in, reg_addr_in (23-bits),

reg_data_in (32-bits), reg_src_in (2-bits). Equivalent signals

ending in _out exist for the output port.

Register requests/replies are signified by a high on

reg_req_*. reg_req_* should only be high for a single clock

cycle otherwise it indicates multiple register access. Note that

a module is permitted to take more than one clock cycle to

produce a reply but it should ensure that requests following

the initial request are not dropped. The reg_rd_wr_L_* signal

indicates whether the transaction is a read (high) or a write

(low). reg_ack_* should be low when the request is generated

and should only be brought high by the module responding to

the request.

10

A module identifies whether it is the target of a request by

inspecting the reg_addr_in signal. If the address matches the

address range assigned to the module then the module should

process the request and generate a response. Once the module

has completed any necessary processing it should raise

reg_ack_out, set reg_data_out to the correct value in the case

of a read, and forward all other inputs to the outputs, all for a

single cycle. If a module determines that it is not the target of

a request then it should forward all inputs unmodified to the

outputs on the next clock cycle.

The reg_src_* signals are used by register request initiators

to identify the responses that are destined to the requestor.

Each requestor should use a unique value as their source

address.

SoftWare
Register

Generic_register_0

HardWare
Register

hw_regssw_regs

Lpm_lookup

reg_req_in

reg_ack_in

reg_rd_wr_L_in

reg_addr_in

reg_data_in

reg_src_in

SoftWare
Register

HardWare
Register

hw_regssw_regs

reg_req_out

reg_ack_out

reg_rd_wr_L_out

reg_addr_out

reg_data_out

reg_src_out

Generic_register_1

Splitter

…… ……

 in_ctrl [1:0]

 in_data [7:0]

 in_write

 in_ready

 out_ctrl [1:0]

 out_data [7:0]

 out_write

 out_ready

Fig. 15 the two kinds of interfaces in register system

The interface between a generic register and a sub-module

in UDP contains two kinds of signals: sw_regs and hw_regs.

They undertake responsibility for the two important functions

mentioned at the beginning of section III D. In addition, the

bit width of sw_regs and hw_regs is set in line with the actual

requirement.

2) Software Development Platform for Register System

Software development platform is based on the tool System

Console which is used under the environment of Quartus. It

provides both debug command line and GUI. Here we use the

command line to debug.

On the platform, we mainly perform two tasks with the help

of Tcl scripting language. On the one hand, it configures the

sub-modules in UDP and the TSE IP core through software

registers; on the other hand, it extracts the internal signals of

the UDP system to help us debug the system through

hardware registers. Every sub-module in UDP has its own

debugging interface. Taking the Load-balancer as an example,

Fig. 16 shows the pivotal function of our system: load

balancing. There are 16384 bytes incoming from IG0. And

then, the data is divided into four parts of the same size: 4096

bytes (see the right part of Fig. 16).

Fig. 16 the result of Load-Balancer

IV. SYSTEM TESTING WITH REAL NETWORK TRAFFIC

Having implemented the Load-Balanced MSSS on FPGA,

next we should test it with real network traffic.

IXIA 400T network tester is our leading network test

instrument. We use four test modules of all the interfaces on

the test board, which can generate and capture standard

Ethernet frames transmitted at the rate of 10/100/1000 Mb/s. It

is so powerful that we can set, if we want to, every byte of a

frame to be sent and get detailed and comprehensive

information about the frames captured. The tester also

provides remote management capabilities. And coupled with

the automated platform set up by Tcl scripting language, we

can implement remote automated testing.

Fig. 17 the statistic views of IXIA

Fig. 17 shows us the final statistical result of a test for four

ports. According to our configuration, port 0 and port 1

prepare to receive each other’s output data. And port2 and

port3 follow the same way. We can see that there is no data

dropped at each port in the case of a large number of input

data. Next, we are going to conduct more complicated and

challenging tests, such as pouring plenty of wrong packets

into the system or testing in the case of the maximum

throughput.

In order to obtain more realistic test results, we have built a

video network platform (VNP) which consists of one server

and several clients. On the platform, software VLC media

player is installed on all the computers. As shown in Fig. 18, a

high-definition movie (1080p) goes though the switching

system from the server PC on the left. When the right client

PC is receiving data, we cannot feel any delay or unsharpness.

11

Our two major development and test platforms: the Altera

StratixIV FPGA and the IXIA tester are shown in the middle

of the picture.

Fig. 18 the video network platform

V. CONCLUSIONS

This paper proposes a new multipath self-routing fabric by

merging the Multistage Interconnection Network (MIN) and

concentrators. Using the same two MSSS, we construct the

Load-Balanced Multipath Self-routing Switching Structure

and implement the system model on an Altera StratixIV

FPGA. After testing under kinds of network environment, we

preliminary confirmed that our system can support QoS

applications for Next Generation Network (NGN).

During the process of system implementation, we first

devised the overall system and then the two main constituent

parts: the UDP system and the register system. When

introducing the UDP system, we analysed the design and

functions of every sub-module. Based on the cooperative

relationship among the sub-modules, we looked through the

whole process of data handling in UDP. When presenting the

register system, we mainly explained the design of two kinds

of interfaces and the software platform.

So far, the scale of our system is still limited (M=4, G=8).

And next step, we plan to increase it to M=8, G=16.

Meanwhile, the design of large-scale wire-speed multicast

base on Load-Balanced MSSS we constructed will be the

focus, which needs more excellent design and more thorough

support system [12].

ACKNOWLEDGMENT

Our project is supported by National Basic Research

Program of China (973 Program) (No.2012CB315904),

National Natural Science Foundation of China (No.61179028),

Natural Science Foundation of Guangdong Province

(No.201101000923), Basic Research of Shenzhen

(No.201104210120A). We also acknowledge the valuable

feedback from Le Yang (Depaul University) during the

preparation of this paper.

REFERENCES

[1] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon

Oberheide, Farnam Jahanian, Internet Inter-Domain Traffic, ACM

SIGCOMM 2010;

[2] John Evans, “QoS Decomposed: The Components of the QoS Toolkit”,

BRKIPM-2010, Cisco Networkers 2007 Conference;

[3] C. S. Chang, D. S. Lee and Y. S. Jou, “Load Balanced Birkhoff-von

Neumann Switches, Part I: One-stage Buffering,” Computer

Communications, vol.25 pp.611-622, 2002;

[4] Y. R. Tsai and C. W .Lo, “Banyan-based Architecture for Quasi-circuit

Switching”, IEEE ICNS 2006, pp. 23-28;

[5] He W, Li H, Wang B, et al. A Load-Balanced Multipath Self-routing

Switching Structure by Concentrators[C]. IEEE ICC 2008;

[6] S. Nojima, et al. "Integrated services packet network using bus matrix

switch," IEEEJ. ofSelectAreasCommun.vol. 5, Oct. 1987, pp 1284-

1292.;

[7] Li S Y R. Unified algebraic theory of sorting, routing, multicasting,

and concentration networks [J]. Communications, IEEE Transactions

on. 2010, 58(1): 247-256;

[8] Li S Y R. Algebraic switching theory and broadband applications.

Academic Press, 2001;

[9] Hui Li, Wei He, Xi CHEN, Peng Yi, Binqiang Wang, “Multi-path

Self-routing Switching Structure by Interconnection of Multistage

Sorting Concentrators”, IEEE CHINACOM2007, Aug.2007, Shanghai;

[10] S. Y. R. Li. Algebraic Switching Theory and Broadband Applications.

Academic Press, 2001;

[11] Register system - NETFPGA Developers Guide, Available:

https://github.com/NetFPGA/netfpga/wiki/DevelopersGuide

[12] Kai Cui, Hui Li, Zhipu Zhu, Fuxin Chen, “Large-scale Wire-speed

Multicast Switching Structure Based on Multipath Self-routing

Switching Structure and Implemented on FPGA”, ICCIA 2012.

https://github.com/NetFPGA/netfpga/wiki/DevelopersGuide#wiki-Register_system

