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Abstract— In order to ensure high quality of service (QoS) for 

Next Generation Network (NGN), we construct a new Load-

Balanced Multipath Self-routing Switching Structure which 

consists of the same two multipath self-routing fabrics. The result 

of simulation is inspiring for achieving 100% throughput and no 

delay or jitter. For this reason, we start on the implementation 

on an Altera StratixIV FPGA. And the whole FPGA system is 

designed into two collaborative components: the UDP system and 

the register system. With two algorithms around input and 

output two stages, incoming traffic is transformed into 

uniformity and then to their final destinations. During the later 

period debugging, software simulation platform and automated 

test platform are built, which contribute to our work very much. 

At last, we carry out several experiments to test and verify our 

system. The report of the test result accords with what we 

expected.   
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I. INTRODUCTION 

In recent years, with a rapid increase in the number of 

Internet users, the network scale expands unceasingly. Rich 

Internet applications, especially the popularity of online video 

services [1], contribute to the network congestion that almost 

everyone experienced. This phenomenon puts forward a huge 

challenge to the vital component, the router. Actually, the 

router has become a significant bottleneck in the development 

of the network. On the other hand, on the basis of TCP/IP, the 

network layer of Internet only provides the best effort delivery 

rather than the commitment for quality of service (QoS) [2]. 

Therefore, looking for a new switching system which is more 

efficient and supports QoS is a key research and development 

point.   

In order to improve the performance of routers and reduce 

implementation costs, various kinds of solutions are proposed. 

The Load-Balanced Birkhoff-von Neumann switch [3] 

interests us for that it can achieve 100% throughput with most 

network traffic by using a balancer to equalize input flows. 

However, the structure does not maintain the order of packets 

after switching and the average queuing delay increases 

linearly with the number of ports. Obviously, it is not suitable 

for large scale extension. On the contrary, another structure 

we focus on, the Banyan-based Quasi-Circuit Switch [4] has 

low component complexity O (Nlog2N, N is the number of 

ports) and the ability of self-routing and distributed processing. 

However, because of the blocking feature, QoS is not ensured. 

Based on the advantages and disadvantages of the above 

two kinds of structures, we propose a Load-Balanced 

Multipath Self-routing Switching Structure by connecting two 

multipath self-routing fabrics in series. The first one acts as a 

load-balancer and the other one severs as a self-routing 

forwarder. Concentrators, which are made up by basic sorting 

units, are sorted by the arrangement rules of Multistage 

Interconnection Network to construct the whole structure. 

Theoretical analysis and NS2 simulation indicate that our 

model can obtain 100% throughput under normal 

circumstances and easy to be expanded in size [5]. 

Further, we translate the theoretical model into a modular 

FPGA system which consists of two main parts: the UDP 

system and the register system. And then, the whole system 

has been implemented on an Altera StratixIV FPGA. In the 

testing phase, our system works steadily and efficiently and 

meets the basic requirements of QoS applications. 

The rest of the paper is organized as follows. Theoretical 

basis and modeling are introduced in Section II. Section III 

describes the system design and implementation based on 

FPGA. Section IV presents system testing with real network 

traffic, and then Section V summarizes the whole work.  

II. THEORETICAL BASIS AND MODELING 

The overall switching system consists of load balancing 

stage, routing switching stage and some auxiliary modules. 

Both of the two main components are structured by 2×2 

sorting units which are based on the theory of algebraic 

distributive lattices and arranged in certain order. In order to 

meet the performance requirement and make the price to the 

minimum, not only have we designed a new network structure 

according to the basic function of the sorting unit, but also a 

perfect in-band signaling system and the matched control 

mechanism. 

A. 2× 2 Basic Sorting Unit 

The 2×2 basic sorting unit is a sequential logic circuit, with 

two inputs and two outputs (respectively called 0/1 port). As 

shown in figure 1 (a) and (b), if conflict-free, it has two states: 
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Bar and Cross [6]. When both inputs contend for the same 

output, sorting unit will randomly select one of them as the 

winner and send its packets through the unit; the loser's data 

will be dropped or misrouted (see figure 1(c)). 
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Fig. 1 2×2 basic sorting unit and its states 

 

In-band control signalling can be used to set the connection 

state of the unit as list in Table I. The unit compares the two- 

bit in-band signalling A and D of each packet to make the 

routing decision. The first bit A indicates the activity of an 

input packet. When A equals 1, it means an active packet is 

arriving. The second bit D indicates the destination of an input 

packet. Thus, 10, 11, 00/01 respectively represent the packet 

which is going to output-0, the packet which is going to 

output-1 and the dummy packet. Under the synchronous clock, 

2×2 basic sorting units act upon the rule: 10<00/01<11, which 

can also be used in sorting concentrators. 

TABLE I.  TWO-BIT IN-BAND SIGNALING CONTROL MECHANISM. 

Connection State 

Input-1 Control Signaling: 

A1D1 

10 00/01 11 

Input-0 Control 

Signaling: 

A0D0 

10 CONF a BAR BAR 

00/01 CROSS EITHER BAR 

11 CROSS CROSS CONF 

a. When CONF (CONFLICT), priority decides the state. 

According to the theory of algebraic distributive lattices [7], 

we can further define Ωroute = {0-bound, 1-bound, idle}, 

namely, 0-bound = 10, 1-bound =11, idle = 00/01. So, the 

former 10<00/01< 11 turns into 0-bound< idle<1-bound. If it 

is conflict, the choice of BAR or CROSS depends on a 

specific application such as the priority.   

B. Inter-stage Bit-permuting Model 

An N×N (N=2n) routing network is a Multistage 

Interconnection Network (MIN) built by 2×2 basic sorting 

units. By using first stage permutation σ0, inter-stage 

permutation σ1, σ2 … σ(n-1) and last stage permutation σn, the  

network can be represented as [σ0: σ1: σ2:…: σ(n-1): σn]. Each 

colon symbolizes a stage of 2x2 units. We can define a Trace 

sequence and a Guide sequence [8] as follows: 

 Tk=(σ0σ1…σK-1)
(-1)(n)   1≤k≤n; 

 Gk=(σ0σ1…σK-1)(n)      1≤k≤n; 

Trace and guide can find a unique route from input to 

output. As Fig. 2 shows, for the network [: (43): (42) (31): 

(43):], the Trace is (4, 3, 2, 1) and the Guide is (1, 2, 3, 4). 

Then, origination address bits I1I2I3I4 one by one are rotated to 

the rightmost bit position at the successive stages and are 

replaced successively by bits O1O2O3O4. The destination 

address bits O1O2O3O4 are specified by Trace or Guide. 
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Fig. 2 an example of routing network 

C. Multipath Self-routing Switching  Structure 

Multipath Self-routing Switching Structure (MSSS) [9] is 

an innovative structure, which combines Multistage 

Interconnection Network (MIN) with concentrators. 

The MIN described in section II B is constructed by plenty 

of basic sorting units, which are divided into several stages. 

Each unit works at the state of CROSS or BAR by its rule. 

This kind of network has the advantages of being highly 

modular and having low device complexity O (Nlog2N). With 

the help of Trace and Guide, there is a unique route from an 

input to any output. For this reason, it avoids the scheduling at 

each time slot and has the ability to be massively expanded. 

To construct MSSS, we substitute each basic sorting unit 

for 2G-to-G concentrator and replace the single cable with a 

bundle of cables. Fig. 3 illustrates the multipath structure 

(N=128 M=16 and G=8) which is based on a 16×16 routing 

network. G shows the size of the group, M is the number of 

the group and N=M×G indicates the whole number of 

input/output ports (G=2g, M=2m, N=2n, n=m+g, n, m, g are 

positive integers). Obviously, we have replaced the basic 

sorting units in Fig. 2 by 16 to 8 concentrators.  
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G=8

G=8 Concentrator

 Fig. 3 Multipath Self-routing Switching Structure (M=16, G=8) 

 

Acting as an indispensable part of MSSS, the 2G-to-G 

concentrator [10] separates the larger G signals of the whole 

2G inputs from the other G signals. Finally, it forms two 

output groups. (The output order within each group is 

arbitrary.) Intuitively, a 2G-to-G concentrator can be built by 

two G×G sorting networks for arbitrary 0-1 sequence, each of 

which is followed by a G-half cleaner. Address arbitrators are 

attached to the whole outputs to clear misrouted packets. All 

the above-mentioned sorting networks, half cleaners and 

arbitrators are constructed by basic sorting units. 

D. Load-Balanced Multipath Self-routing Switching Structure 

In the project, the size of arriving packets is random. And 

furthermore, time is slotted and synchronized so that packets 

can be transmitted within a time slot for each input line of the 

structure. 

As shown in Fig. 4, two MSSSs are used in series to 

compose the whole structure, with the VOGQs (Virtual 

Output Group Queues) [5] ahead of the first fabric and the 

assemblages at the end of the second fabric.  Actually, by 

using simple algorithms and small buffers, the first stage 

fabric serves as a load-balancer, which spread any pattern of 

incoming traffic which is to be distributed uniformly to all the 

ingress ports of the second stage fabric. Then the second stage 

fabric forwards the data in a self-routing manner to their final 

destinations. Every G inputs/outputs are bundled into an 

input/output group. Thus N input lines form M groups on the 

input side (N=M×G), so is the output side. To ease 

presentation, IG/OG denotes input/output group, and MG 

represents a line group between the two stages. In this project, 

there are 4 IGs, 4 MGs and 4 OGs. Each group has 8 lines. . 

  VOGQs are responsible for storing packets and making 

data ready for IGs. We use VOGQ (i,j) to denote the VOGQ 

whose packets are destined for OGj from IGi.  
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Fig. 4 Load-Balance Multipath Self-routing Switching Structure 

 
Generally, for the system we proposed, the processing of 

arriving packets at each time slot is composed by several 

sequential phases which are shown as follows. In addition, to 

achieve maximum processing speed, we should use pipeline 

structure as far as possible. 

1) Preparatory phase: New packets arrive during this 

phase. With checking and judging, the packet which is 

destined for OGj from IGi, is stored into VOGQ (i,j). 

2) Splitting phase: Packets in VOGQs are split into cells 

according to Algorithm 1. And each cell will be added 

with some certain packet headers. 

3) Balancing phase: With the help of MG tags, cells will 

be routed to every middle group simultaneously and 

uniformly. When the cells reach the middle groups, 

MG tags will be dropped.    

4)  Routing phase: Cells are further to their final 

destinations directed by OG tags. When they get 

through the second stage fabric, a self-routing 

forwarder, the OG tags will be discarded. 

5) Assembling phase: Cells which arrive simultaneously 

are to be assembled to original packets according to 

Algorithm 2. When completed, packets will be output 

from the OGs.  

Algorithm 1: For each input group, packets stored in 

VOGQs should be split into cells with equal length during 

splitting phase. Furthermore, we add MG tags, OG tags, IG 

tags and some other control messages ahead of each cell. The 

MG tags are set artificially. For example, a packet is split into 

five cells and their respective MG tags should be 0, 1, 2, 3, 0, 

orderly. If the following packet can be split into three cells, 

the tags will be 1, 2 and 3. The rule is also suitable for other 

various packets.   

Algorithm 2: For each output group, cells with the same 

IG address are assembled during assembling phase. IG tags, 

sequence numbers and flags of the last cells will help us to 

reorganize the scrambled cells. For example, we get a few of 

cells in OG address 01. Some of them have the same IG tag 00 

and the sequence numbers 3,2,4,1. By the way, the cell with 

sequence number 4 is marked with the trailing flag. The others 
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own IG tag 10 and the sequence numbers 3, 2, 1, but no cell 

has the trailing flag. By now, we can easily get the packet 

which is from IG 00 by connecting the cells together in the 

order 1,2,3,4. For the packet from IG 10, we still need to wait 

for the last cell to arrive. 

As Algorithm 1 is introduced, some extra bytes are added at 

the same time, like the tags, flags and so on. Now, we try to 

analyse the extra overhead of our theoretical model.  In the 

system, the standard size of a cell is 128Byte and the header 

of a cell has 8Byte additional control information. For a 

1000Byte packet (1000=7×128+104), it will be split into eight 

cells and the last cell has only 104 bytes. To keep the same 

size, 24Byte invalid information should be padded to the last 

cell. Consequently, all the overhead is 8×8+24=88Byte (8.6%). 

The calculation above is just for the 1000Byte packet, and 

generally, different sizes of packets would be split into 

different numbers of cells. Besides, various last cells may 

have diverse numbers of padding bytes. Considering that the 

size of a standard MAC frame ranges from 64Byte to 

1518Byte, the worst case appears when the packet size is 

1409Byte (1409=11×128+1) and the extra overhead is 

11×8+127=215Byte (14%). When a 128Byte packet arrives, 

we would be happy for the extra overhead only occupies 8 

bytes (0.0625%). In practical applications, the extra overhead 

is always acceptable for the reason of statistical average. 

III. SYETEM DESIGN AND IMPLEMENTATION BASED ON 

FPGA 

We use Verilog HDL to carry on the main design and Tcl 

script language to build an operating platform for the register 

system. Functional simulation is also an important part, which 

is implemented by Perl and Makefile. Perl can be used for 

generating different kinds of packets and Makefile usually for 

simulation platform.  

A. the Overall Architecture of  the System 

The whole system is implemented on an Altera StratixIV 

FPGA, with a Marvell 88E1111 PHY chip being used for 

physical layer. The TSE (Triple-Speed Ethernet) IP core, 

interacted with the PHY chip through RGMII interface, 

provides standard Ethernet frames.  

We divide the system into two main parts, the user data 

path (UDP) system (There are the same four UDP systems in 

the whole system, each of which servers a group of MSSS and 

we just need to introduce one of them in the paper.) and the 

register system. They are independent structurally and 

interrelated functionally. The UDP system is responsible for 

data processing and cell switching with many sub-modules, 

FSMs (finite-state machines) and FIFOs in it. The data flow is 

shown as the dark thick arrows in Fig. 5. In order to facilitate 

debugging, we have designed the register system to monitor 

signals and states in UDP in real-time. Its data flow is shown 

as the light-coloured thick arrows in Fig. 5. 
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Fig. 5 the overall architecture of the system 

 

Fig. 5 describes the overall architecture of the system and it 

contains detailed information of ever hierarchy. At the top, the 

phase-locked loop (PLL) provides high-quality clock signal 

for the entire system and the synchronizer can be used to reset 

the system. Qsys_full_system consists of four ISE IP cores, 

sgmii_mac_adapter and qsys_udp. The latter two parts are 

fully designed by us. Qsys_udp includes udp_reg_if and 

user_data_path. Udp_reg_if is the interface between the 

Avalon bus and registers. User_data_path is the most 

complicated one, which covers seven main modules. They are 

lpm_lookup_wrapper, splitter_wrapper, arbiter_wrapper, load-

balancer_wrapper, self-routing_forwarder_wrapper, 

assemblage_wrapper and udp_reg_master. The first six 

modules own their respective sub-modules and the same 

register generic_reg. Udp_reg_master control all the registers 

below and it connects to udp_reg_if. 

Lastly, the logic utilization is 32% according to the 

compilation report generated by Quartus II 11.0. 

B. Design and Analysis of User Data Path System 

Packets enter into the system through the RJ45 network 

port firstly. And after being processed in physical layer by 

PHY chip, they will be sent to the UDP system, which is the 

major part of data processing. There are four main functions 

app:ds:physical
app:ds:layer
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in UDP. First of all, we can extract necessary information 

from packets or cells, such as the packet length, priority and 

the target address, etc. Second, by utilizing the information we 

extract, the UDP system generates various packet headers, 

which will be very useful to assist the data processing. Third, 

it achieves load balancing and self routing by constructing the 

switching fabric. At last, it completes the assembling of the 

cells. 

The left part of Fig. 6 gives us a full view of the process. 

The solid arrows indicate the direction of data flow. We can 

see that input packets pass through nine sub-modules (not 

including PHY) in turn and get back to PHY.  

The functions of each sub-module are as follows. 

1) Sgmii_ethernet: It is an interface module between the 

UDP system and the external PHY chip. Mainly 

constructed by Altera Triple-Speed Ethernet (TSE) IP 

cores, it provides standard Ethernet frames. 

2) Rx_queue:  This sub-module accepts frames, extracts 

information and generates the splitting header. The 

information  is important for Splitter and will be kept 

until Assemblage.    

3) Lpm_lookup: It extracts the information of destination 

address and priority, which form the LPM header for 

Self-routing Forwarder. 

4) Splitter: For efficiency and easiness of implementation, 

the following sub-modules are designed based on cells. 

So, the Splitter will be a key sub-module. It splits each 

packet into several cells and generates three kinds of 

headers, the load balancing header for Load balancer, 

the self-routing header for Self-routing Forwarder and 

the assembling header for assemblage. 

5) Arbiter: As we know, the group size of MSSS we 

proposed is G=8. Thus, cells should be placed as a 

group of eight lines. The size of data on each line is 

10bit (8 bits for payload and 2 bits for a control signal). 

This is what Arbiter do. 

6) Load-balancer: The structure is the same as MSSS. It 

transforms the incoming traffic into uniformity. 

7) Self-routing Forwarder: It is also a MSSS. Cells switch 

here and then go to their final destinations. 

8) Assemblage:  After switching, groups of cells arrive at 

every time slot. Assemblage assembles them back to 

standard Ethernet frames and generates the starting 

index header, which is just to show the very beginning 

of each frame. 

9) Tx_queue: It contains some memory buffers to cache 

the frames and then sends them back to Sgmii_ethernet.   

             DATA(8)                 
……                     8 bit
Payload                  8 bit
……                     8 bit

Lpm_

lookup

            DATA(8)            CTRL(2)
0000_0000                8 bit    11
……                     8 bit    00
Payload                  8 bit    00
……                     8 bit    00
Eop                      8 bit    10

6

            DATA(8)            CTRL(2)
Dst_port                 4 bit    11
Tos                      4 bit     
Src_port                 4 bit    01    
Cell_len_hi              4 bit    
Cell_len_lo              7 bit    01
Last_cell_flag           1 bit    
FUll_cell_num            5 bit    01       
Last_cell_pad_hi         3 bit        
Last_cell_pad_lo         8 bit    01    
……                     8 bit    00
Payload                  8 bit    00
……                     8 bit    00
Eop                      8 bit    10

            DATA(8)            CTRL(2)
Src_port                 4 bit    11    
Cell_len_hi              4 bit    
Cell_len_lo              7 bit    01
Last_cell_flag           1 bit    
FUll_cell_num            5 bit    01       
Last_cell_pad_hi         3 bit        
Last_cEll_pad_lo         8 bit    01
……                     8 bit    00
Payload                  8 bit    00
……                     8 bit    00
Eop                      8 bit    10

           DATA(8)             CTRL(2)
Lbs_active_mid           1 bit    11
Lbs_dst_mid              3 bit    
Lbs_priority_mid         4 bit    
Lbs_active               1 bit    01
Lbs_dst                  3 bit    
Lbs_priority             4 bit    
Lbs_ig                   4 bit    01
Lbs_nog_hi               4 bit    
Lbs_nog_lo               1 bit    01
Lbs_noc                  6 bit    
Lbs_eop                  1 bit    
Src_port                 4 bit    01    
Cell_len_hi              4 bit    
Cell_len_lo              7 bit    01
Dummy_cell_flag          1 bit     
Full_payload_cell_num    5 bit    01       
Dummy_cell_pad_zeros_hi  3 bit        
Dummy_cell_pad_zeros_lo  8 bit    01
……                     8 bit    00
Payload                  8 bit    00
……                     8 bit    00
Eoc                      8 bit    10

Assemblage
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Splitter
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PHY
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2

1

1
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Fig. 6 data processing and data format in UDP  

 

The right part of Fig. 6 pointed by dotted arrows describes 

the specific data format in each sub-module. Moreover, as 

shown in the right part, the standard size of data in UDP is 

8bit. After going across Rx_queue, splitter_header is produced 

along with the extra added CTRL signal. The 2bit CTRL 

signal will be transmitted with data in parallel to assist data 

identification and processing. The signal “11” signifies that 

the concurrent data is the first byte of a fresh new packet or 

cell. And “01” represents the various kinds of headers we 

generate. “00”shows the payload data and “10” tells us the 

end of a packet or cell. 

To sum up, the UDP system extracts the information from 

incoming frames, and then generates six kinds of headers 

which are attached in front of the former frames. We use 

labels “1”, “2”, “3”, “4”, “5”, “6” to represent splitting header, 

LPM header, assembling header, self-routing header, load 

balancing header and starting label header, respectively. 
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1) Splitting header: It is created by Rx_queue and 

contains 4 bytes information. Src_port is the source 

address of the current frame. The 4bit signal can 

represent 16 ports, but the group size of our system is 

M=4. Obviously, it is convenient for scale expansion in 

the future. The sum of cell_len_hi and cell_len_lo is 

11bit, which indicates the standard length of the cell. 

We set them 2`b0001 and 7`b000_0000, meaning 

128Byte. Last_cell_flag indicates whether the current 

frame can be split into a certain number of cells exactly. 

Set to high, the signal means that the size of the packet 

isn`t an integral multiple of 128Byte. Thus the last cell 

should be padded some bytes to keep the same length. 

Then, last_cell_pad_hi and last_cell_pad_lo show the 

number of bytes to be padded. Finally, signal 

full_cell_num is the number of complete cells. 

2) Lpm header: Compared with others, it`s a simple one 

for containing only one byte information. Dst_port is 

the destination port of the packet and tos means the 

priority. 

3) Assembling header: Generated by Splitter and carrying 

important information for Assemblage, this header 

helps to assemble the cells later. Lbs_ig corresponds to 

the input group number IG shown in Fig. 4. We know 

that Arbiter places the cells on a group of eight lines. 

Lbs_nog_hi and lbs_nog_lo point out which line the 

cell belongs to. We can enlarge the group size to 32 

furthest. Lbs_noc is the significant serial number, 

declaring the actual position of the cell in the original 

packet. The last signal lbs_eop is the mark of the last 

cell. We can use these signals to reassemble the cells 

and specific methods are mentioned in Algorithm 2. 

4)  Self-routing header: It is just the output group number 

OG shown in Fig. 4 and it will be dropped after passing 

through Self-routing Forwarder. In fact, it is the 

recoding of the Lpm header. Analogously, lbs_active 

proves the cell active and lbs_dst gives the destination. 

Reviewing the 2×2 basic sorting unit introduced in the 

beginning, if the state is conflict, signal lbs_priority 

will make the decision. 

5) Load balancing header: Being similar to self-routing 

header, lbs_active_mid is the significance bit and 

lbs_priority_mid indicates the priority. The only 

difference between the two headers is that the 

destination shown by lbs_dst_mid is the middle group 

number MG in Fig. 4. Load balancing header is set 

according to Algorithm 1 and it will be discarded after 

passing through Load-Balancer.  

6) Starting label header: Being simple but necessary, it is 

used to show the very beginning of the frame after 

assembling.  

C. Design and Functional Simulation of Key Sub-modules in 

UDP  

The design and function realization of a module need to 

pass the test of simulation software firstly. Furthermore, by 

using functional simulation, we can visually study the design 

details, modify the errors and improve efficiency. Our 

simulation platform is built with the help of three main tools: 

Perl scripting language, Makefile scripting language and the 

simulation software Modelsim. 

The full name of Perl is Practical Extraction and Report 

Language and it can easily manipulate numbers, texts, files, 

and directories. Hence, we take advantage of it to generate 

various kinds of standard Ethernet frames and some other 

packets with certain headers. All the data is saved as texts as 

the input of the whole system or a sub-module. 

Makefie is a scripting language with the functions of 

executing programs and describing their relationship. In the 

project, there are four IP cores, many modules and complex 

hierarchies. If we only use the graphical interface or directly 

use the Modelsim command line, workload will be very huge. 

Making use of the powerful tools and abundant functions 

involved in Makefile, we can greatly simplify the work of 

building the simulation platform.  

Modelsim is famous for its friendly command-line 

operating environment and high accuracy. Commands “vlib”, 

“vlog”, “vsim” and “add wave” will be frequently used, which 

represent “building simulation library”, “compiling”, 

“simulating” and “adding waves”. With using Modelsim, all 

the operations in a complex graphical interface can be 

implemented through the command line and run by the script 

program. After efforts, the automated simulation comes true. 

Next, we will introduce the design and verification in detail 

of several key modules based on the above-mentioned 

platform.  

1) Splitter 

As shown in Fig 7, the internal structure of Splitter is 

simple and intuitive. And its function is just to cut the input 

variable-length packets into output equal-length cells. But in 

fact, the realization of this process is not easy. Specific 

“assembling header”, “self-routing header” and “load 

balancing header” should be attached to the head of each cell 

to insure the proper functioning of the three following sub-

modules. This attributes the success to the powerful output 

state machine Out_FSM. 

Out_FSM …

Splitter Payload_fifoInput Cells

…… …

Fig. 7 the design of sub-module Splitter 

 

Fig. 8 displays the simulation waveform of Splitter, the 

upper half of which shows the incoming packets. We can 

distinguish them clearly with the help of signal in_wr and 

signal in_ctrl. Configured by Perl, the lengths of packets in the 

four rounded rectangles are 70Byte, 128Byte, 256Byte and 

app:ds:above-mentioned
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429Byte. Based on the principle of splitting, the first one 

should be padded 58 bytes to reach 128Byte long, the second 

one is just right a cell and the third one will be cut into two 

complete cells. The fourth packet has some hurdles: the last 

one of the four dissected cells needs byte stuffing. In the 

second half of Fig. 8, we can see the cells and the padding 

bytes 8`hee. 

 
Fig. 8 the simulation waveform of Splitter 

 
Fig. 9 the details of the header information 

 

Fig. 9 describes the details of the header information. 

Shown in the two rounded rectangles, input data is the output 

of Lpm_lookup and it has five bytes header information. 

When it outputs from Splitter, its header contains eight bytes 

data: one byte for load balancing header, one byte for self-

routing header, two bytes for assembling header and four 

bytes for splitter header. 

2) Multi-path Self-routing Fabric 

Composing Load-Balanced MSSS, both Load-Balancer and 

Self-routing Forwarder are the same MSSS. So we take one 

for example. 

MSSS is the heart of the whole system and it consists of 

plenty of concentrators which are connected as the way shown 

in Fig. 3. The concentrator is constituted by 2×2 sorting units 

which perform the basic operation: comparing the incoming 

two cells. In the project, a total of 32 ports transmit cells 

simultaneously because G equals to 8 and M equals to 4. 

Fig. 10 is the simulation waveform of MSSS and the cell is 

represented as the data in the circle. Shown as a column, 32 

cells are dispatched collectively at every time slot. It is empty 

if there is no a cell to be sent in a port. In the middle, the 

width of the rounded rectangle indicates the time interval of 

cell sending, which is defined as time_slot_plus. The value of 

time_slot_plus is not set arbitrarily but by calculation. When 

Arbiter is sending a 136Byte cell (including 8 bytes header 

information), one byte will leave at every clock rising edge. 

All of the ports perform the same operation at the same time. 

On the opposite, Assemblage captures the cells which arrive 

concurrently, one port by one port. Consequently, the process 

needs enough time and enough buffers. In theory, 

136×8=1088 clock cycles are necessary and we use the 

number 1100 just in case. This is why the gap between two 

cells owns about 8 times the width of a cell (see Fig. 10). 
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Fig. 10 the simulation waveform of MSSS

3) Assemblage 

Assemblage stands in sharp contrast to what's happening in 

Splitter and Fig. 11 illustrates its complicated design structure. 

Three state machines FSM1, FSM2, FSM3 are responsible for 

cell processing with plenty of FIFOs to store temporary data.   

For the example of OG2, the assembling of cells is shown 

as follows. 

At the far left part of Fig. 11, cells arrive from 8 lines 

simultaneously, which turn to serial cells after passing through 

Cell_buffer. But these cells may come from different source 

ports and they are very likely to be scrambled after switching.  

The state machine FSM1 is designed for cell identification 

and cell classification. By means of the assembling header, we 

can readily pick out which input line the cell belongs to and 

then classify the cells into Cell_fifo0 to Cell_fifo15. The most 

difficult part remains to FSM2 to complete it. We use the 

same four state machines to assemble every four groups of 

classified cells into original data. Note that here we have no 

more need for the packet header and the padding bytes. In the 

last step, FSM3 outputs the packets with the attached starting 

label headers from Pkt_fifos, whose situation monitored by 

Token-bins. 

OG2
Cell

 buffer
cells FSM1

IG0
FSM2

_1

FSM2

_2

FSM2

_3

FSM2

_4

Pkt_fifo_0

Pkt_fifo_1

Pkt_fifo_2

Pkt_fifo_3

FSM3 Output_2

0 1 2 3

Token-bins

IG1

IG2

IG3

Cell_fifo_0
Cell_fifo_1
Cell_fifo_2
Cell_fifo_3

Cell_fifo_4
Cell_fifo_5
Cell_fifo_6
Cell_fifo_7

Cell_fifo_8
Cell_fifo_9

Cell_fifo_10
Cell_fifo_11

Cell_fifo_12
Cell_fifo_13
Cell_fifo_14
Cell_fifo_15  

Fig. 11 the design of sub-module Assemblage 

 

As shown in Fig. 12, inputs are serial cells, which can be 

distinguished by observing signal in_wr and signal in_ctrl. 

The cell in the circle includes padding bytes, and obviously, it 

is the last cell of the packet. Based on this information, we can 

speculate that there is an arriving packet, which consists of 

seven cells. The output waveform (shown in the rounded 

rectangle) conforms to the egress rules and proves our 

judgment.  
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Fig. 12 the simulation waveform of Assemblage 

 

Clearly shown in figure 13, the first byte of the output 

packet is 8`b0000_0000 and corresponding CTRL signal is 

2`b11. Undoubtedly, it is the starting label header. 

 

 
Fig. 13 the starting label header 

D. Design and Analysis of Register System 

Another major component of the Load-Balanced Multipath 

Self-routing Switching Structure (Load-Balanced MSSS) is 

the register system, which provides an interface to the outside 

world for the UDP system. In practice, we need a mechanism 

to control the operations in UDP. And when carrying on back-

end design and system debugging, we are looking forward to a 

window to monitor key signals such as the state of FIFOs, the 

value of counters and so on. Without register system, we can 

hardly finish the following work of a big project like ours.  

In summary, the register system has two main functions: on 

the one hand it configures every sub-module in UDP, known 

as the software register operation; on the other hand it extracts 

the internal signals from sub-modules in UDP, known as the 

hardware register operation. The latter is our research focus. 

1) the Structure of Register System 

Our register system references the pipeline architecture in 

the NetFPGA program conducted by Stanford University [11]. 

As shown in Fig. 14, every sub-module in UDP connects with 

a general register, called Generic_reg. All the general registers 

and the controller Regs_master form a ring end to end. And 

then it can interact with the host computer through the Avalon 

bus devised by Altera. The mutual exchanges of information 

of the two systems benefit from the IP core 

JTAG_Avalon_Master_Bridge. 

Instead of being connected in a star topology to a central 

arbiter, the register interfaces of the modules are connected 

together in a pipeline manner to simplify the process of adding 

modules. When a new register is inserted, what we need to do 

is just distributing it the exclusive address space in the 

pipeline organization while the central arbiter should be 

modified in the star topology. 

Two kinds of registers, software register and hardware 

register, constitute the generic register Generic_reg which 

plays a key role. Software register can be written or read by 

host PC while hardware register can only be read. The 

interfaces in the system have also two types: one is for the 

generic registers (signified by the light-coloured arrows in Fig. 

14) and another is the interface between a sub-module in UDP 

and a generic register (signified by the dark arrows in Fig. 14). 

 

Data_bus

Splitter

Generic_

regs1

Arbiter

Generic_

regs2

Load-

Balancer

Generic_

regs3

Generic_

regs4

Assemblage

Generic_

regs5

Regs_master

Self-

routing 

Forwarder

Lpm_

lookup

Generic

_regs0

 
Fig. 14 the whole structure of register system 

 

When the host wants to access a register, it sends an 

interrogation signal to Regs_master through the Avalon bus. 

Then the general registers will pass the signal one by one. In 

this case, the signal will go through all the registers but only 

one could respond because of the destination information in 

the signal. A register can only accept the request message 

belongs to itself by checking the destination address. If valid, 

it replies immediately and transmits the answers backward 

until back to host. 

Fig. 15 shows the internal details of the two interfaces, one 

of which is for the registers and it is complicated compared 

with the other one. According to the official descriptions, the 

register pipeline is 32-bits wide and runs at 125 MHz. Each 

module should have two pairs of ports: one for incoming 

requests and one for outgoing replies. The following set of 

signals is the input signals for a single module: reg_req_in, 

reg_ack_in, reg_rd_wr_L_in, reg_addr_in (23-bits), 

reg_data_in (32-bits), reg_src_in (2-bits). Equivalent signals 

ending in _out exist for the output port. 

Register requests/replies are signified by a high on 

reg_req_*. reg_req_* should only be high for a single clock 

cycle otherwise it indicates multiple register access. Note that 

a module is permitted to take more than one clock cycle to 

produce a reply but it should ensure that requests following 

the initial request are not dropped. The reg_rd_wr_L_* signal 

indicates whether the transaction is a read (high) or a write 

(low). reg_ack_* should be low when the request is generated 

and should only be brought high by the module responding to 

the request. 
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A module identifies whether it is the target of a request by 

inspecting the reg_addr_in signal. If the address matches the 

address range assigned to the module then the module should 

process the request and generate a response. Once the module 

has completed any necessary processing it should raise 

reg_ack_out, set reg_data_out to the correct value in the case 

of a read, and forward all other inputs to the outputs, all for a 

single cycle. If a module determines that it is not the target of 

a request then it should forward all inputs unmodified to the 

outputs on the next clock cycle. 

The reg_src_* signals are used by register request initiators 

to identify the responses that are destined to the requestor. 

Each requestor should use a unique value as their source 

address. 

SoftWare
Register

Generic_register_0

HardWare
Register

hw_regssw_regs

Lpm_lookup

reg_req_in

reg_ack_in

reg_rd_wr_L_in

reg_addr_in

reg_data_in

reg_src_in

SoftWare
Register

HardWare
Register

hw_regssw_regs

reg_req_out

reg_ack_out

reg_rd_wr_L_out

reg_addr_out

reg_data_out

reg_src_out

Generic_register_1

Splitter

…… ……

 in_ctrl [1:0]

 in_data [7:0] 

 in_write

 in_ready

 out_ctrl [1:0]

 out_data [7:0] 

 out_write

 out_ready

 
Fig. 15 the two kinds of interfaces in register system 

 

The interface between a generic register and a sub-module 

in UDP contains two kinds of signals: sw_regs and hw_regs. 

They undertake responsibility for the two important functions 

mentioned at the beginning of section III D. In addition, the 

bit width of sw_regs and hw_regs is set in line with the actual 

requirement. 

2) Software Development Platform for Register System 

Software development platform is based on the tool System 

Console which is used under the environment of Quartus. It 

provides both debug command line and GUI. Here we use the 

command line to debug. 

On the platform, we mainly perform two tasks with the help 

of Tcl scripting language. On the one hand, it configures the 

sub-modules in UDP and the TSE IP core through software 

registers; on the other hand, it extracts the internal signals of 

the UDP system to help us debug the system through 

hardware registers. Every sub-module in UDP has its own 

debugging interface. Taking the Load-balancer as an example, 

Fig. 16 shows the pivotal function of our system: load 

balancing. There are 16384 bytes incoming from IG0. And 

then, the data is divided into four parts of the same size: 4096 

bytes (see the right part of Fig. 16).   

 
 

Fig. 16 the result of Load-Balancer 

IV. SYSTEM TESTING WITH REAL NETWORK TRAFFIC 

Having implemented the Load-Balanced MSSS on FPGA, 

next we should test it with real network traffic. 

IXIA 400T network tester is our leading network test 

instrument. We use four test modules of all the interfaces on 

the test board, which can generate and capture standard 

Ethernet frames transmitted at the rate of 10/100/1000 Mb/s. It 

is so powerful that we can set, if we want to, every byte of a 

frame to be sent and get detailed and comprehensive 

information about the frames captured. The tester also 

provides remote management capabilities. And coupled with 

the automated platform set up by Tcl scripting language, we 

can implement remote automated testing. 

 

 
 

Fig. 17 the statistic views of IXIA 

 

Fig. 17 shows us the final statistical result of a test for four 

ports. According to our configuration, port 0 and port 1 

prepare to receive each other’s output data. And port2 and 

port3 follow the same way. We can see that there is no data 

dropped at each port in the case of a large number of input 

data. Next, we are going to conduct more complicated and 

challenging tests, such as pouring plenty of wrong packets 

into the system or testing in the case of the maximum 

throughput.    

In order to obtain more realistic test results, we have built a 

video network platform (VNP) which consists of one server 

and several clients. On the platform, software VLC media 

player is installed on all the computers. As shown in Fig. 18, a 

high-definition movie (1080p) goes though the switching 

system from the server PC on the left. When the right client 

PC is receiving data, we cannot feel any delay or unsharpness. 
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Our two major development and test platforms: the Altera 

StratixIV FPGA and the IXIA tester are shown in the middle 

of the picture.   

 

 
 

Fig. 18 the video network platform 

V. CONCLUSIONS 

This paper proposes a new multipath self-routing fabric by 

merging the Multistage Interconnection Network (MIN) and 

concentrators. Using the same two MSSS, we construct the 

Load-Balanced Multipath Self-routing Switching Structure 

and implement the system model on an Altera StratixIV 

FPGA. After testing under kinds of network environment, we 

preliminary confirmed that our system can support QoS 

applications for Next Generation Network (NGN). 

During the process of system implementation, we first 

devised the overall system and then the two main constituent 

parts: the UDP system and the register system. When 

introducing the UDP system, we analysed the design and 

functions of every sub-module. Based on the cooperative 

relationship among the sub-modules, we looked through the 

whole process of data handling in UDP. When presenting the 

register system, we mainly explained the design of two kinds 

of interfaces and the software platform. 

So far, the scale of our system is still limited (M=4, G=8). 

And next step, we plan to increase it to M=8, G=16. 

Meanwhile, the design of large-scale wire-speed multicast 

base on Load-Balanced MSSS we constructed will be the 

focus, which needs more excellent design and more thorough 

support system [12]. 
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