
56

The 1st Asia-Pacific Workshop on FPGA Applications, Xiamen, China, 2012

Air Guitar
on Altera DE2-70 FPGA Architecture

Ger Yang, Tzu-Ping Sung, Wei-Tze Tsai, advised by Shao-Yi Chien
Department of Electrical Engineering, National Taiwan University

Abs trac t — A ir gu i tar i s a we l l -known

competition all over the world. It gives us a

passion for those who might not play the guitar

so well can be indulging in the magic power

of guitar as well. However, although one may

act so seriously as if he/she has a guitar, the

sound would never be produced. Therefore, by

capturing the user’s movement, we proposed a

real-time and equipment-free system to make

air guitar not only acting but also an alternative

and user-friendly way to play the guitar.

Keywords — Air Guitar, FPGA, Real-Time,

Gesture Detection

I. INTRODUCTION

Worldwide air guitar competitions are regularly
been held in many countries for years. An “air-
guitarist” does not play a real guitar. Instead,
he attracts audience by exaggerated motions
pretending he is really playing something, together
with pre-recorded rock or heavy metal-style music,
dazzling lights, and loud singing or lip-synching.
Nevertheless, as we have just mentioned, an
air-guitarist can only play pre-recorded songs,
and thus limiting his performance only a kind
of dance. What we are going to do is to endow
an air-guitarist the capability of playing a tune
impromptu. Besides, we also transform the
complicated fingering into simple hand gestures so
that even the ones who have never learnt how to
play a guitar can easily play our design.

In 2005, students from Helsinki University of
Technology developed a system, which translates
a performer’s hand movements into sounds by
recognizing a pair of gloves of specified color via
video camera. Today this system is exhibiting at
the Helsinki Science Center, and for more details,
you may refer to [1] and [2]. Later in 2006,
Australian researcher Helmer et al developed
Smart Textiles [3], which can be used to sense
human movement by embedding sensors within
clothes. Its application to the air guitar is an “Air-
guitar T-shirt”. In 2007, Japanese company Takara
Tony introduced a product called “Air Guitar Pro”

[4], which is a small device imitating the guitar neck
with numerous buttons on it. A performer takes
it and selects the tones via the buttons. Besides,
there are infrared motion sensors on the bottom
of the device, acting as virtual strings, and a
performer is able to wave his hand by the sensor
to play sounds. Recently, there are also some air
guitar applications on the Microsoft Kinect or
Apple iOS devices [5], however their functions are
limited owing to their frameworks.

We are going to implement our air guitar system
on the Altera DE2-70 FPGA architecture. The
performer’s motion will be captured by a video
camera, and then be processed by hardware-level
image processing and recognition techniques,
which is similar to Helsinki students’ work in [1]
and [2]. However, we do not require users to wear
gloves with specified colors, but detect the skin
color instead. Furthermore, our system is able to
recognize various hand gestures and performers
can easily play music of different styles precisely.

57

Air Guitar on Altera DE2-70 FPGA Architecture

This paper will be organized as follows. First,
in section II, we are going to give a detailed
description to the features of our system, including
a simple tutorial to play our air guitar. Then,
starting from section III, we are going to illustrate
the technical details, such as platform, system
architecture diagrams, and the detailed algorithms
applied in each functional block. In the end, we
will briefly give the usage of the resources on the
FPGA board and then give a conclusion to our
design.

II. FUNCTION DESCRIPTION

The Air Guitar aims to provide a new interface
for the user who has never played a guitar before
to play a virtual guitar like real. Therefore, it is
necessary to give the user an experience analogue
to how a guitar is played in reality. After observing
how one actually plays a guitar, we concluded
that the completeness of the guitar performance
composes of three parts which include finger
positioning, strumming and sound generating from
the body. As a result, we designed these parts
individually in order to meet our requirements
which we mentioned above. That is, we aim to
make playing air guitar like real.

The main components are gesture detector,
m o t i o n d e t e c t o r a n d a u d i o s y n t h e s i z e r
corresponding to finger positioning, strumming
and sound generating, respectively. We will give a
brief introduction to them as following:

A. Gesture Detection

Guitar is so popular for its ability to play
plentiful chords and notes for an accompaniment.
The basis of a guitar to be diversifying is the six
chords on the neck. The fingers’ position for each
chord gives a variety of chords. However, it is
hard for new comers to memorize so many chords
and position the fingers correctly. Therefore, we
simplified the gestures so that everyone can play

Air Guitar in a very simple way. We support up to
twelve different gestures which represent to twelve
kinds of chords and notes in Figure 1 (a). To
detect the gesture, we may put our left hand in a
specified detection area where we recognize which
gesture it is.

Figure 1. left (a) and right (b)

B. Motion Detection

The most fascinating part when playing a guitar
is strumming through the chords and making a
harmonious sound. There are 5 thin detection bars
which are shown in Figure 1 (b) for our right hand
to strum through. Therefore, we may generate
sound through 5 detectors and each simulates an
independent chord. The sound from them then
composed to be a chord, e.g. C major.

C. Audio Synthesizer

It takes two steps for a guitar to make sound
which are the vibration of the steel chords and the
resonance of the body. This results in a special
sound for the guitar. Therefore, to synthesize
the sound of the guitar, we need to make the
amplitude curve, waveform and pitch to be similar
enough as it really is. The audio synthesizer is
specially designed to generate a single note of the
guitar sound with different pitches. As a result,
we may use it to generate a variety of chords by
different combinations.

D. Instruction

We can see from Figure 1. To play with the
Air Guitar, we simply need both of our hand,
one to change gesture and the other to strum the

58

The 1st Asia-Pacific Workshop on FPGA Applications, Xiamen, China, 2012

chords. As show in the display panel, there are
two regions. The gesture detector is located in the
right area and the motion detector is in the left
area with five chords. We need to change our left
hand gesture according to Figure 1 to get different
kinds of chords and in the meantime strumming
our right hand on the other region to get sound.
In addition, we may choose single note mode
and chords mode to play with more fun. From
description above, we have proposed a guitar-
free performing system which gives the same user
experience as playing it real.

III. ENVIRONMENT &
COMPONENTS

Our system is based on the Altera Cyclone II
EP2C70 FPGA built on the DE2-70 board. A
500-megapixel D5M camera with 2560×2160
full-resolution is used to capture the performer’s
motion, and a LTM LCD is for the display with
the SDRAM on the DE2-70 board. Besides, the
synthesized audio is output to a speaker via the
DAC on the DE2-70 board. In addition, in order to
make our system work more accurately, sometimes
we need some fill lights when the environment
light source is not homogeneous.

Figure 2 is the compilation result of our
implemen-tation. The compiler we used is Quartus
II 10.0. About 21% of logic elements on the FPGA
are used.

Figure 2.

IV. SYSTEM ARCHITECTURE

In this section, we are going to introduce the
design architecture of our system. Figure 3 (a) is
the data flow diagram, which provides a simple
view to our design. Figure 3 (b) is the detailed
system diagram, in which the relationship between
each functional block is shown. Our system is
composed of three stages, the Pre-processing
Stage, the Detection Stage, and the Synthesizing
Stage. We are going to give a brief introduction to
each stage in the following part.

A. Pre-processing Stage

In this stage, the video signals are being
processed to the format that can be dealt with in
the next stage. First, the video frames are captured
from the D5M camera and down-sampled to
800×600 resolution with 30-bit RGB color
space. Then, the video frames are being sent to
the skin detector. In the skin detector, heuristics
are applied for determining the skin color parts
on each frame. After that, the result is filtered
to remove noises and interferences so that the
detectors in the next stage are able to make their
decision based on the clear skin color information.

B. Detection Stage

In this stage, there are various kinds of detectors
to figure out what kind of moves the performer is
doing. A motion detector is a functional block that
detects whether the performer is waving his right
hand over the virtual strings. Each virtual string is
implemented as an independent module. A gesture
detector recognizes the performer’s gesture of his
left hand, and is composed of four parts: finger
detector, palm detector, thumb detector, and a
decision agent that collects the information from
the previous three parts. Next, their results are
sent to the next stage, the synthesizing stage.

59

Air Guitar on Altera DE2-70 FPGA Architecture

C. Synthesizing Stage

The audio synthesizer generates the tones and
output via the DAC and then to the speaker. Just
as we have mentioned in the previous sub-section,
each string is implemented as an independent
module. As long as the user waves his hand over a
virtual string, the corresponding motion detector
attracts it and then triggers a tune generator. A
tune generator will decide the physical properties
according to the information given by the gesture
detector. After that, the module audio synthesizer
collects the information from the tune generator
array and then synthesizes the sounds.

V. SKIN DETECTION ALGORITHMS

A. Skin Detection Heuristic

The video frames captured from a D5M camera
is firstly transformed into 30-bit RGB color space,
in which 10 bits ranging from 0 to 1023 represent
each color. In such a color space, we follow the
heuristic rule to determine whether a pixel is of
skin color.

R > 380 & G > 160 & B > 80 &
R > G & R > B & R – G > 60 &
R – B > 60 & (B < 550 | R – B > 320)

Figure 3. top (a) and bottom (b)

60

The 1st Asia-Pacific Workshop on FPGA Applications, Xiamen, China, 2012

The heuristic is based on [6] and is modified to
adapt the skin color of Asian.

B. Filtering

However, we found that with only this heuristic,
the noises and interferences will deeply affect
the precision of the gesture detector. We apply a
filtering scheme, which we call it “multi-level low-
pass filter”, to eliminate its effect.

The filtering scheme is composed of many
levels. In each level, every pixel in a given frame
is compared with its eight adjacent pixels which
is shown in Figure 4. If there are more than six of
them are of skin color, then the pixel is claimed as
a skin-colored pixel. The reason for adopting this
scheme is that, we find out that pixels of skin color
detected from real skin tends to be gathered as
a cluster, while skin color pixels from noises and
interferences are usually separated as small pieces.

The process mentioned in the above part is done
for three times. According to our experiment,
repeating the process for three times can filter out
about 80% of noise and interference in most cases.
And this is the reason that we call this process the
“multi-level” filtering.

Figure 4.

Figure 5. left (a), middle (b), and right (c)

VI. GESTURE DETECTION
ALGORITHMS

The gesture detection algorithm we designed
is real-time and non-buffered. Therefore, the
algorithm responses fast and it requires no extra
memory. The gesture detector is composed of four
minor building blocks, which are palm detection,
finger detection, thumb detection, and gesture
decision. In the gesture decision block, it will
collect the information generated by the previous
three parts and then make a final decision of
which gesture the user is making.

A. Palm Detection

The main purpose of the palm detector is to
identify the upper and bottom boundary of a palm.
Let us first learn how the video signal is read in.
The video signal is read sequentially from left
to right as a line, and up to down line by line.
Thus, we count the number of skin color pixels in
each line. By heuristic, the palm area is defined
as the lines with more than 80 skin color pixels.
Hence, we are able to find the upper boundary of
the palm, which is the first line of the palm area
that exceeds the threshold, and we may find the
upper y-coordinate of palm. Similarly, the bottom
boundary, which is the last line of the palm area, is
the lower y-coordinate. The result is shown Figure
5 (a).

B. Finger Detection

The work to detect finger gesture is a relatively
hard work. However, for the gesture we defined,
they are particularly in the same direction as
we showed previously in Figure 1 (a) and the
difference between each gesture is basically the
number and the presence of fingers. Therefore,
we may add the constraint of hand orientation to
make the detection in a predictable way. Moreover,
we try to reduce the problem to f inger t ip

61

Air Guitar on Altera DE2-70 FPGA Architecture

identification. The finger detection algorithm has
two steps, interest peak identification and fingertip
detection policy. In the first step, we are trying to
find out all the possible candidates of fingertips.
And in the second step, we try to rule out all the
misclassified fingertips.

To achieve the first step, we first find the
rightmost (largest x-coordinate) skin color pixel in
each scanning line. Next, we will compare these
rightmost pixels to find interest peaks. The peaks
are illustrated in Figure 5 (b). In this step, we
may observe that there are still many misclassified
fingertips.

In the second step, we set up a policy with two
rules to eliminate the wrong fingertips. The first
rule is that the difference of y-coordinate between
identified peaks must exceed 15 pixels. That is,
two peaks which is close in the y-direction should
only be counted once since there exists a least
distance between two fingers. The final rule is that
fingers should have similar x-coordinates except
for the little finger when the hand is oriented in
the desirable way. As a result, we may see that
misclassified peaks are eliminated in this case. The
result is shown in Figure 5 (c).

C. Thumb Detection

The purpose that we designed an individual
detector for thumb without detecting it in the
finger detection is that thumb has a distinct
orientation compared to the others. Therefore, we
develop another way to deal with thumb. Contrary
to finding peaks, thumb detection is trying to
count the number of skin color pixels in the thumb
area which is the area above the upper boundary
of the palm we’ve been detecting continuously. If
the number exceeds a threshold, the thumb is said
to be raised. Together with the finger detection, we
may support 12 different gestures.

D. Gesture Decision

From the information above we may make a
decision for the gesture. The resulting gestures are
shown in Figure 1 (a) and the supporting chords
and tones are shown in Figure 6.

Chords Tones Chords Tones

C B. A C7

D C B Dm

E7 D C˙ Em

F E D˙ Fmaj7

G F E˙ G7

Bm G F˙ Am

Figure 6.

VII. MOTION DETECTION
ALGORITHMS

To detect the motion of hands, we don’t need
too much information of the shape and gesture.
All we need to do is to detect well on whether a
hand actually strum through it. That is, we need
each motion to be detected rapidly. On contrary,
the detector should detect nothing when there
is no hand over it. To meet the requirement we
designed a module which checks a specific region
at each frame. When the number of the filtered
skin color pixels in the region exceeds a threshold,
the region is set to be in “covered” state. On the
other hand, as the number doesn’t the threshold,
it is set to be in “uncovered” state. Furthermore,
the sound is played if the state transition satisfies
from “uncovered” to “covered.” The reason is that
it is accordance to a chord is really plucked. In
addition, the threshold is acquired in a heuristic
way. Moreover, the process is non-buffered since
we check each horizontal line in each scanning. As
a result, the reaction time is rapid and can be said
to be real-time.

62

The 1st Asia-Pacific Workshop on FPGA Applications, Xiamen, China, 2012

VIII. AUDIO SYNTHESIZER

We generate the sounds by using a synthesizer
instead of recording them in advance. In order to
simulate the sounds of a guitar, we generate them
according to their physical properties, the timbre,
pitch, and the amplitude curve. Besides, each
virtual string is implemented as an independent
module, which is called a tune generator, and the
physical properties are adjusted in it.

A. Timbre & Pitch

Physically, to generate a sound, we have to know
its timbre and pitch, or waveform and frequency,
in academic terms. Given a waveform in a period,
theoretically we are able to generate the sound of
any frequency. In digital systems, a waveform is
represented as a series of samples over a discrete-
time scale. Consider such a periodic waveform
of frequency f, given the sampling period Ts, the
phase difference between consecutive samples is
2πfTs. Suppose there are N samples in a period,
and we are going to generate a sound of frequency
f, we must play the waveform within the time T=1/f,
and thus we have a sound with sampling frequency
Nf. This means that to play the generated sound
with the sampling frequency 1/Ts, we can just
simply down-sample the sound with the sampling
frequency Nf.

In our system, we describe the waveform as
64 samples and store them in the module wave
generator. Though there are some errors owing to
the implementation limitation, the pitch of each
tone has been carefully tuned by a tuner, and is
made sure that the chords sound harmonically to
human ears.

B. Amplitude Curve

According to [7] Curve, source not found], the
amplitude curve of a guitar sound can be modelled
as exp(k/t), as shown in Figure 7. Further, we can

approximate it into two linear parts. The first part
is about the 0.3 seconds from the beginning, in
which the amplitude diminishes really fast, where
the second part lasts from the 0.3 second and
decrease on a relatively slow rate. At the end of
the first part, the volume is about only one-eighth
compared to that in the beginning. We follow this
rule to generate the sound. When a second sound
is played before the first sound ends, the amplitude
curve is reset to the beginning state, which means
that a new waveform will overlay the original one.

C. Mixer

There are five virtual strings in our system.
Since each string is implemented independently,
as we have mentioned in the previous sections,
we need a mixer to integrate the five channels.
The mixer formula is des igned with some
considerations. First, we must avoid overflows.
Second, owing to the characteristics of human
ears, the sounds with higher frequency tend to
be louder even if the volumes are identical, they
must be weakened. Suppose {Sk} is the strength of
the sounds in the five channels, on the increasing
order of the frequency. The mixer formula is given
as the following heuristic:

m = S1 + ¾ S2 + ½ S3 + 3/8 (S4 + S5)

You may not ice that th is formula i s not
normalized. In fact, the result is right-shifted so
that overflow would not occur.

Figure 7.

63

Air Guitar on Altera DE2-70 FPGA Architecture

CONCLUSIONS

With all the detection techniques discussed
above and the synthesis of guitar sound, we
proposed a real-time, non-buffered and equipment-
free Air Guitar system to give users a new
experience playing the guitar with bare hand and
easy gestures.

ACKNOWLEDGMENT

We wish to acknowledge Altera® Inc. and
Terasic® Inc. for their sponsor and hard works
holding the competition which provides us with a
chance to learn from the project. In addition, we
also wish to acknowledge Professor Shao-Yi Chien
and National Taiwan University for providing us
with a very good environment and training.

REFERENCES

[1]. Teemu Ma "ki-Patola, Juha Laitinen, Aki
Kanerva, and Tapio Takala. “Experiments with
virtual reality instru- ments”. In Proceedings
of the 2005 conference on New interfaces for
musical expression, NIME ’05, pages 11– 16,
Singapore, Singapore, 2005. National University
of Singapore.

[2]. Teemu; Kanerva Aki; Huovilainen Antti
Karjalainen, Matti; Ma "ki-patola. “Virtual air
guitar”. J. Audio Eng. Soc, 54(10):964–980,
2006.

[3]. R.J.N. Helmer, M.A. Mestrovic, D. Farrow,
S. Lucas, and W. Spratford. “Smart textiles:
Position and motion sensing for sport,
entertainment and rehabilitation.” Advances in
Science and Technology, 60:144–153, 2009.

[4]. [Online]: http://www.foxnews.com/
story/0,2933,287115,00.html

[5]. Hamed Ketabdar, Hengwei Chang, Peyman
Moghadam, Mehran Roshandel, and Babak
Naderi. “Magiguitar: a guitar that is played in
air!” In Proceedings of the 14th international

conference on Human-computer interaction
with mobile devices and services companion,
MobileHCI ’12, pages 181–184, New York, NY,
USA, 2012. ACM.

[6]. V. Vezhnevets, V. Sazonov, and A. Andreeva.
A survey on pixel-based skin color detection
techniques. In Proc. Graphicon, volume 3, pages
85–92. Moscow, Russia, 2003.

[7]. SK. Bradley, M. Cheng, and V.L. Stonick,
“Automated analysis and computationally
efficient synthesis of acoustic guitar strings and
body,” in IEEE ASSP Workshop on Applications
of Signal Processing to Audionand Acoustics,
New Platz, NY, October 1995.

