

Outline

- Warm Up Introductions
- The System You are Going to Implement
- Second Look at SCMA Encoder/Decoder
- Some Other Magic about SCMA
- Real-time SCMA Demo in Field

What is SCMA, and why SCMA

WARM UP INTRODUCTIONS

From OFDMA to SCMA

Orthogonal multi-user multiplexing

- Users occupy orthogonal resources for communication
- Easy to implement (single user detection)
- Number of connections limited by the number of physical resource blocks that can be scheduled

Non-orthogonal multiuser multiplexing

- Users occupy the same resource blocks using CDMA
- Non-practically high multi-user joint detection complexity
- Limited number of concurrent users due to limited sequences
- Better coverage due to spreading gain

Overloaded multi-user multiplexing

- Users occupy the same resource blocks in a low density way
- Affordable low multi-user joint detection complexity
- Less collision even for large number of concurrent Users
- Better coverage due to spreading gain

SCMA (Sparse Code Multiple Access)

Simplified system, module interface definition, configuration parameters

THE SYSTEM YOU ARE GOING TO IMPLEMENT

^{*} Turbo coding and decoding can be replaced by other forward error correction (FEC) channel coding/decoding modules.

Note: Every module is performed for data streams of 6 users.

System Configuration Parameters for Implementation

Parameter Categories	Related Variables	Typical value	Description
	V	6	6 variable nodes (VN), number of data layers
	F	4	4 function nodes (FN), number of physical resources
CCNAN Cardaha ali	d_f	3	Each FN is connected to 3 VNs
SCMA Codebook	d_v	2	Each VN is connected to 2 FNs
	М	4	Number of codeword in each codebook
	CB_i	F-by-M matrix	Codebook for one SCMA data layer, given
Turbo Coding	R	1/2	Coding rate, defined as the ratio of information bits over coded bits
	N_iter	3~15	Number of iterations in MPA
SCMA decoding	H_n	{1}	Channel gain, in the white Gaussian noise only case, H_n={h_n,k}={1}
	APP_i	1/M	A prior probability of codeword i, assuming equal probability 1/M
	В	125 bytes = 1000 bits	Total number of information bits, randomly generated
System Scale	N	B / R = 2000 bits	Total number of coded bits after Turbo coding
	L	L = F * N/log2(M) = 4000	Total number of physical resource units

MPA Algorithm, complexity reduction hints

SECOND LOOK AT SCMA ENCODER/DECODER

How to Do SCMA Encoding with SCMA Codebook

Selection of SCMA Decoder

- The optimal multi-user detection can be done by using the maximum joint a posteriori probability (MAP) detection with excessive search – non-practical complexity
- With the low density spreading structure employed in SCMA, we can derive near ML performance multi-user detection with message passing algorithm (MPA) affordable complexity

Diagram for Massage Passing Algorithm

MPA Decoder (Performed for each SCMA block)

Initial calculation of the conditional probability

Iterative message passing along edges

- 1. FN updates and message passing to VN
- 2. VN updates and message passing to FN

N_iter iterations?

Output the final guess of the codeword of each data layer at VN node and change the probability to bit LLR for channel decoder

Parameters	Description of the parameters
y_n, n=1,, F	Received signal as input to the MPA decoder on resource n
m_k, k=1,, V	Codeword selected by layer k, m_k = 1,, M
No_n, n=1,, F	Noise power estimation on physical resource n
C _k,n(m_k)	The constellation symbol of VN node k on physical resource n when using codeword m_k
H _n = {h_n,k}	Channel gain of user k on physical resource n
Ap_k, k=1,, V	A prior probability of codeword k, assuming equal probability 1/M
LLR_k,b	logarithm of the likelihood ratio of layer k bit b
N_iter	Number of iterations in the MPA

Step 1: Initial calculation of the conditional probability

- For each function node FN, calculate the f_n() function, which is the set of all possible residual signals given the known or estimated channel h_n,k and the assumed transmitted codeword C_k,n(m_k)
- When d_f = 3, as in the example, for each FN node n, there are M*M*M combinations of transmitted signals, so there are in total F*M*M*M values to store for f() function calculation

$$\begin{split} & f_{n}(y_{n}, m_{1}, m_{2}, m_{3}, N_{0,n}, H_{n}) = \frac{-1}{N_{0,n}} \left\| y_{n} - \left(h_{n,1} C_{1,n}(m_{1}) + h_{n,2} C_{2,n}(m_{2}) + h_{n,3} C_{3,n}(m_{3}) \right) \right\|^{2} \\ & m_{1} = 1, \dots, M \qquad m_{2} = 1, \dots, M \qquad m_{3} = 1, \dots, M \qquad n = 1, \dots, F \end{split}$$

Phi_n() function is actually the conditional probability for given codeword combination, for Gaussian noise case, it is the exponential operation over f_n function, so the storage needed is the same

$$P(yn|x1, x2, x3) - \cdots - \phi_n(y_n, m_1, m_2, m_3, N_{0,n}, H_n) = \exp(f_n(y_n, m_1, m_2, m_3, N_{0,n}, H_n))$$

To prepare for the iterations, we assign the a prior probability for each codeword, which is assumed to be equal

P(x1), P(x2), P(x3) ---
$$I_{v_1 \to g}^{init}(m_1) = I_{v_2 \to g}^{init}(m_2) = I_{v_3 \to g}^{init}(m_3) = \frac{1}{M}$$

Parameters	Description of the parameters
y_n, n=1,, F	Received signal as input to the MPA decoder on resource n
m_k, k=1,, V	Codeword selected by layer k, m_k = 1,, M
No_n, n=1,, F	Noise power estimation on physical resource n
C _k,n(m_k)	The constellation symbol of VN node k on physical resource n when using codeword m_k
H _n = {h_n,k}	Channel gain of user k on physical resource n
Ap_k, k=1,, V	A prior probability of codeword k, assuming equal probability 1/M
LLR_k,b	logarithm of the likelihood ratio of layer k bit b
N_iter	Number of iterations in the MPA

Step 2: Iterative message passing along edges

[FN update]: message passing from FN to its neighboring VNs

- FN node g passes updates obtained from extrinsic information to its neighboring VN nodes (g to v1, information from v2 and v3 are extrinsic)
- The message passed to v1 contains the guess of what signal at g may be given all possibilities of v1

$$\mathbf{I}_{g \to v_1}(m_1) = \sum_{m_2=1}^{M} \sum_{m_3=1}^{M} \phi_n(\mathbf{y}_n, m_1, m_2, m_3, \mathbf{N}_{0,n}, \mathbf{H}_n) \left(\mathbf{I}_{v_2 \to g}(m_2) \mathbf{I}_{v_3 \to g}(m_3) \right) m_1 = 1, \dots, M$$

$$\mathbf{I}_{g \to v_2}(m_2) = \sum_{m_1=1}^{M} \sum_{m_3=1}^{M} \phi_n(\mathbf{y}_n, m_1, m_2, m_3, \mathbf{N}_{0,n}, \mathbf{H}_n) \left(\mathbf{I}_{v_1 \to g}(m_1) \mathbf{I}_{v_3 \to g}(m_3) \right) m_2 = 1, \dots, M$$

$$\mathbf{I}_{g \to v_3}(m_3) = \sum_{m_1 = 1}^{M} \sum_{m_2 = 1}^{M} \phi_n(\mathbf{y}_n, m_1, m_2, m_3, \mathbf{N}_{0,n}, \mathbf{H}_n) \left(\mathbf{I}_{v_1 \to g}(m_1) \mathbf{I}_{v_2 \to g}(m_2) \right) m_3 = 1, \dots, M$$

[VN update]: message passing from VN to its neighboring FNs

- VN node v passes updates obtained from extrinsic information to its neighboring FN nodes (v to g2, information from g1 is extrinsic)
- In the dv=2 case, it is actually a "guess" swap at VN node

$$\mathbf{I}_{v \to g_1}(m) = \text{normalize} \left(a p_v(m) \mathbf{I}_{g_2 \to v}(m) \right) \quad m = 1, ..., M$$

$$\mathbf{I}_{v \to g_2}(m) = \text{normalize} \left(ap_v(m) \mathbf{I}_{g_1 \to v}(m) \right) \qquad m = 1, ..., M$$
 Page 19

Parameters	Description of the parameters
y_n, n=1,, F	Received signal as input to the MPA decoder on resource n
m_k, k=1,, V	Codeword selected by layer k, m_k = 1,, M
No_n, n=1,, F	Noise power estimation on physical resource n
C _k,n(m_k)	The constellation symbol of VN node k on physical resource n when using codeword m_k
H _n = {h_n,k}	Channel gain of user k on physical resource n
Ap_k, k=1,, V	A prior probability of codeword k, assuming equal probability 1/M
LLR_k,b	logarithm of the likelihood ratio of layer k bit b
N_iter	Number of iterations in the MPA

Step 3: LLR output at variable node after N_iter iterations

- After N_iter iterations, we shall output the guess at each VN node (for each data layer) as the detection results
- The guess at VN node v for codeword m is a chain product of all guesses from all its neighboring FN nodes and the a prior probability

$$Q_v(m) = ap_v(m) \mathbf{I}_{g_1 \to v}(m) \mathbf{I}_{g_2 \to v}(m)$$
 $m = 1, ..., M$

After getting the probability guess of codeword at each layer, we then need to calculate the Log-Likelihood-Rate (LLR) for each coded bit, so that they can serve as the input for the turbo decoder (or any other channel decoder) directly after MPA

$$LLR_x = \log\left(\frac{P(b_x = 0)}{P(b_x = 1)}\right)$$

$$LLR_{x} = \log \left(\frac{\sum_{\mathbf{m}: \mathbf{b}_{\mathbf{m}, x} = 0} \mathbf{Q}_{\mathbf{v}}(\mathbf{m})}{\sum_{\mathbf{m}: \mathbf{b}_{\mathbf{m}, x} = 1} \mathbf{Q}_{\mathbf{v}}(\mathbf{m})} \right) = \log \left(\sum_{\mathbf{m}: \mathbf{b}_{\mathbf{m}, x} = 0} \mathbf{Q}_{\mathbf{v}}(\mathbf{m}) \right) - \log \left(\sum_{\mathbf{m}: \mathbf{b}_{\mathbf{m}, x} = 1} \mathbf{Q}_{\mathbf{v}}(\mathbf{m}) \right)$$

Hints on Low Complexity MPA Receiver Design

- Short-comings of the current MPA algorithm
 - 1. Though much lower complexity compared with the optimal MAP algorithm (thanks to the sparse structure of the SCMA codebook), it is still of high complexity for hardware
 - 2. The exp(.) operations causes very large dynamic ranges and very high storage burden if using lookup table, which is not good news for hardware implementation
- Hint 1: Change to LOG domain using Jacobi's logarithm
 - 1. After changing to Log domain, exp(.) operation disappears: MPA -> MAX-Log MPA

$$\log\left(\sum_{i=1}^{N} \exp(f_i)\right) \approx \max\{f_1, f_2, \dots, f_N\}$$

- Hint 2: Optimize the calculations during iterations
 - 1. Try to optimize the order of iterations
 - 2. Try to use as much as possible the common results in the calculation

flexible overloading, Grant-free, Outer-loop Turbo MPA

SOME OTHER MAGIC OF SCMA

Flexible overloading to support massive connectivity

overloading factor =
$$\frac{UEs/data \ layers}{number \ of \ resources}$$

Flexible overloading to support massive connectivity

300% Larger Number of Connected Users

Given the same SNR, SCMA can boost total system throughput up to 300% over LTE (@LTE BLER=0.01)

Blind detection to support Grant-free transmission

Blind detection

- Joint detection of users' status and data;
- Robust to codebook collision.

Grant-free transmission

 No need to schedule users for uplink transmissions.

no codebook collide

codebook collide

when the codebook collides, the performance loss is less than 0.5dB

Outer-loop Turbo MPA to enhance the performance

The iterative detection between MPA decoder and Turbo decoder can significantly improve the performance.

about 2 dB SNR gain at the BLER of 10⁻² with 4 iterations

REAL-TIME SCMA DEMO IN FIELD

Base Station (Soft Baseband) (RRU) SCMAUplink UE#1 UE#2 ... UE#12

Parameters	Contents
Frame Structure	TDD, Uplink, LTE R10
Mode	SCMA over F-OFDM
Carrier Frequency	2.6GHz
System Bandwidth	20MHz
No. of UEs @4RB (20 byte small packets for each UE)	LTE baseline: 4 SCMA: up to 12
Total UE Tx Power	23dBm (Max.)
RxAntennaConf. of eNB	2 Rx
Tx Antenna Conf. of UE	1 Tx

Case 1.1: 6 ue in same fixed location

Case 1.3: 6 ue walk around road (near)

Case 1.2: 6 ue in different fixed location

Case 1.4: 6 ue walk around road (far)

